Answer:
See attached picture for both electrophillic substitution in pyrole and in pyridine.
Explanation:
Answer:
V₂ = 21.3 dm³
Explanation:
Given data:
Initial volume of gas = 3.00 dm³
Initial pressure = 101 Kpa
Final pressure = 14.2 Kpa
Final volume = ?
Solution;
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
101 Kpa × 3.00 dm³ = 14.2 Kpa × V₂
V₂ = 303 Kpa. dm³/ 14.2 Kpa
V₂ = 21.3 dm³
Explanation:
This is what a chromosome looks like during mataphase
Yes it could, but you'd have to set up the process very carefully.
I see two major challenges right away:
1). Displacement of water would not be a wise method, since rock salt
is soluble (dissolves) in water. So as soon as you start lowering it into
your graduated cylinder full of water, its volume would immediately start
to decrease. If you lowered it slowly enough, you might even measure
a volume close to zero, and when you pulled the string back out of the
water, there might be nothing left on the end of it.
So you would have to choose some other fluid besides water ... one in
which rock salt doesn't dissolve. I don't know right now what that could
be. You'd have to shop around and find one.
2). Whatever fluid you did choose, it would also have to be less dense
than rock salt. If it's more dense, then the rock salt just floats in it, and
never goes all the way under. If that happens, then you have a tough
time measuring the total volume of the lump.
So the displacement method could perhaps be used, in principle, but
it would not be easy.
Answer:
The angular momentum quantum number, l, describes the shape of the orbital that an electron occupies. The lowest possible value of l is 0, and its highest possible value, depending on the principal quantum number, is n - 1.