1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rasek [7]
2 years ago
11

Use the given information to find (a) sin(s+t), (b) tan(s+t), and (c) the quadrant of s+t. cos s = - 12/13 and sin t = 4/5, s an

d t in quadrant ll.
Mathematics
1 answer:
Anton [14]2 years ago
4 0

Answer:

Part a) sin(s + t) =-\frac{63}{65}    

Part b) tan(s + t) = -\frac{63}{16}

Part c) (s+t) lie on Quadrant IV

Step-by-step explanation:

[Part a) Find sin(s+t)

we know that

sin(s + t) = sin(s) cos(t) + sin(t)cos(s)

step 1

Find sin(s)

sin^{2}(s)+cos^{2}(s)=1

we have

cos(s)=-\frac{12}{13}

substitute

sin^{2}(s)+(-\frac{12}{13})^{2}=1

sin^{2}(s)+(\frac{144}{169})=1

sin^{2}(s)=1-(\frac{144}{169})

sin^{2}(s)=(\frac{25}{169})

sin(s)=\frac{5}{13} ---> is positive because s lie on II Quadrant

step 2

Find cos(t)

sin^{2}(t)+cos^{2}(t)=1

we have

sin(t)=\frac{4}{5}

substitute

(\frac{4}{5})^{2}+cos^{2}(t)=1

(\frac{16}{25})+cos^{2}(t)=1

cos^{2}(t)=1-(\frac{16}{25})

cos^{2}(t)=\frac{9}{25}

cos(t)=-\frac{3}{5} is negative because t lie on II Quadrant

step 3

Find sin(s+t)

sin(s + t) = sin(s) cos(t) + sin(t)cos(s)

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

substitute the values

sin(s + t) = (\frac{5}{13})(-\frac{3}{5}) + (\frac{4}{5})(-\frac{12}{13})

sin(s + t) = -(\frac{15}{65}) -(\frac{48}{65})

sin(s + t) =-\frac{63}{65}

Part b) Find tan(s+t)

we know that

tex]tan(s + t) = (tan(s) + tan(t))/(1 - tan(s)tan(t))[/tex]

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

step 1

Find tan(s)

tan(s)=sin(s)/cos(s)

substitute

tan(s)=(\frac{5}{13})/(-\frac{12}{13})=-\frac{5}{12}

step 2

Find tan(t)

tan(t)=sin(t)/cos(t)

substitute

tan(t)=(\frac{4}{5})/(-\frac{3}{5})=-\frac{4}{3}

step 3

Find tan(s+t)

tan(s + t) = (tan(s) + tan(t))/(1 - tan(s)tan(t))

substitute the values

tan(s + t) = (-\frac{5}{12} -\frac{4}{3})/(1 - (-\frac{5}{12})(-\frac{4}{3}))

tan(s + t) = (-\frac{21}{12})/(1 - \frac{20}{36})

tan(s + t) = (-\frac{21}{12})/(\frac{16}{36})

tan(s + t) = -\frac{63}{16}

Part c) Quadrant of s+t

we know that

sin(s + t) =negative  ----> (s+t) could be in III or IV quadrant

tan(s + t) =negative ----> (s+t) could be in III or IV quadrant

Find the value of cos(s+t)

cos(s+t) = cos(s) cos(t) -sin (s) sin(t)

we have

sin(s)=\frac{5}{13}

cos(t)=-\frac{3}{5}

sin(t)=\frac{4}{5}

cos(s)=-\frac{12}{13}

substitute

cos(s+t) = (-\frac{12}{13})(-\frac{3}{5})-(\frac{5}{13})(\frac{4}{5})

cos(s+t) = (\frac{36}{65})-(\frac{20}{65})

cos(s+t) =\frac{16}{65}

we have that

cos(s+t)=positive -----> (s+t) could be in I or IV quadrant

sin(s + t) =negative  ----> (s+t) could be in III or IV quadrant

tan(s + t) =negative ----> (s+t) could be in III or IV quadrant

therefore

(s+t) lie on Quadrant IV

You might be interested in
If c is 5, then 6x =​
Firlakuza [10]

Answer:

30

Step-by-step explanation:

because if x is 5 then 6(5)

and 6x5=30

5 0
2 years ago
Which of the following illustrates a phase shift?
Natasha_Volkova [10]

<u>Answer:</u>

A. y = -2 - cos(x-π)


<u>Explanation:</u>

<u>The general form of the trig equation is:</u>

y = A sin (Bx + C) + D

where:

A is the amplitude

\frac{2\pi}{B} is the period

\frac{-C}{B} is the phase shift

D is the vertical shift


<u>Now, let's check the choices:</u>

<u>A. y = -2 - cos(x-π)</u>

\frac{-C}{B} = \frac{\pi}{1}  = \pi

Therefore, the function has a phase shift of π


<u>B. y = 3 cos(4x)</u>

\frac{-C}{B} = \frac{0}{4} = 0

Therefore, the function has no phase shift


<u>C. y = tan(2x)</u>

\frac{-C}{B} = \frac{0}{2} = 0

Therefore, the function has no phase shift


<u>D. y = 1 + sin(x)</u>

\frac{-C}{B} = \frac{0}{1} = 0

Therefore, the function has no phase shift


<u>Based on the above,</u> the correct answer is A


Hope this helps :)

3 0
3 years ago
Read 2 more answers
( 2 x -6 ) +4 ( x - 3 )
OLga [1]
(2x-6) + 4(x-3) {distribute 4 out and expand problem}
2x+6+4x-12 {combine like terms}
6x-6 {your answer}
3 0
2 years ago
An elliptical track has a major axis that is 50 yards long and a minor axis that is 44 yards long. Find an equation for the trac
Luden [163]
Do It Have a Pictures
8 0
3 years ago
Use the change of variables s=x+3y, t=y to find the area of the ellipse x2+6xy+10y2≤1.
MArishka [77]

t=y\implies s=x+3t\implies x=s-3t

Then

x^2+6xy+10y^2=(s-3t)^2+6(s-3t)t+10t^2=s^2+t^2\le1

which is a disk of radius 1, hence with area \pi.

5 0
3 years ago
Other questions:
  • A scuba diver swam 96 feet beneath the surface of the lake.he then climb up 49 feet .wat is the depth now?
    14·1 answer
  • What is the answer for 973=0.973
    13·1 answer
  • Estimate a line of best fit using two points on the line
    8·2 answers
  • What is .0833 in a fraction?
    12·2 answers
  • The coordinates of the vertices of a quadrilateral are P(1,2), R(1,4), S(3, 4), and T(4,2).
    7·1 answer
  • Is x to the zero power less than 1
    6·1 answer
  • What is the equation of the line that passes through the point (6,-1) and has a slope of 1?
    13·1 answer
  • Can anyone help me out with proofs ? If B is midpoint of AC and D is the midpoint of CE prove BD is parallel AE.
    6·2 answers
  • It’s a bonus question on a work sheet I need your help.
    10·1 answer
  • Question 6(Multiple Choice Worth 5 points)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!