Yep that is true. These are rxns that change the nucleus
Answer:
Part a: The rate of the equation for 1st order reaction is given as ![Rate=k[H_2O_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BH_2O_2%5D)
Part b: The integrated Rate Law is given as ![[H_2O_2]=[H_2O_2]_0 e^{-kt}](https://tex.z-dn.net/?f=%5BH_2O_2%5D%3D%5BH_2O_2%5D_0%20e%5E%7B-kt%7D)
Part c: The value of rate constant is 
Part d: Concentration after 4000 s is 0.043 M.
Explanation:
By plotting the relation between the natural log of concentration of
, the graph forms a straight line as indicated in the figure attached. This indicates that the reaction is of 1st order.
Part a
Rate Law
The rate of the equation for 1st order reaction is given as
![Rate=k[H_2O_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BH_2O_2%5D)
Part b
Integrated Rate Law
The integrated Rate Law is given as
![[H_2O_2]=[H_2O_2]_0 e^{-kt}](https://tex.z-dn.net/?f=%5BH_2O_2%5D%3D%5BH_2O_2%5D_0%20e%5E%7B-kt%7D)
Part c
Value of the Rate Constant
Value of the rate constant is given by using the relation between 1st two observations i.e.
t1=0, M1=1.00
t2=120 s , M2=0.91
So k is calculated as

The value of rate constant is 
Part d
Concentration after 4000 s is given as

Concentration after 4000 s is 0.043 M.
Answer:
Option C. 251 kJ
Explanation:
The activation energy (Ea) of a given reaction is the minimum energy that must be overcomed for reactant to proceed to product.
The activation energy (Ea) can be obtained from an energy profile diagram by simply calculating the difference between the energy of the activation complex (i.e the peak) and the energy of the reactant.
Thus, we can obtain the activation energy for the reaction above as follow:
Activation complex = 332.6 kJ
Energy of reactant = 81.6 kJ
Activation energy =?
Activation energy = Activation complex – Energy of reactant
Activation energy = 332.6 – 81.6
Activation energy = 251 kJ
Therefore, the activation energy of the reaction is 251 kJ
Answer:- 0.88
Solution:- Masses of silver and copper metals are given and we are asked to calculate the percentage of silver in the alloy.
mass percent of Ag = 
Mass of Ag = 17.6 g
mass of Cu = 2.40 g
mass of alloy = 17.6 g + 2.40 g = 20.0 g
Let's plug in the values in the formula:
mass percentage of Ag = 
mass percentage of Ag = 88%
So, the mass percentage of silver in sterling silver is 88% and in decimal form it is 0.88.
Answer:
+6
Explanation:
We are given;
We are required to determine the oxidation number of S in the compound.
We need to know that;
- The total oxidation number of this compound is Zero
- Oxidation number of Ba metal is +2
- Oxidation number of Oxygen atom is -2
- There is 1 atom of Ba, 1 atom of S and 4 atoms of O in the compound.
Therefore; assuming oxidation number of S is x
Then, (1× 2) + (1 × x) + ( 4 ×(-2)) = 0
2 + x - 8 = 0
x = 6 or +6
Thus oxidation number of Sulfur in BaSO₄ is +6.