X=4 and x=-4 Your answer would be C.
Geometric sequence general form: a * r^n
For Greg, we are given the elimination of the medicine as a geometric nth term equation:
200 * (0.88)^t
The amount of medicine starts at 200 mg and every hour, decreases by 12%;
To compare the decrease in medicine in the body between the two, it is useful to get them in a common form;
So, using the data provided for Henry, we will also attempt to find a geometric nth term equation that will work if we can:
As a geometric sequence, the first term would be a and the second term would be ar where r = multiplier;
If we divide the second term by the first term, we will therefore get r, which is 0.94 for Henry;
We can check that the data for Henry can be represented as a geometric sequence by using the multiplier (r) to see if we can generate the third value of the data;
We do this like so:
282 * (0.94)^2 = 249.18 (correct to 2 d.p)
We can tell that the data for Henry is also a geometric sequence.
So now, we just look at the multiplier for Henry and we find that every hour, the medicine decreases by 6%, half of the rate of decrease for Greg.
The answer is therefore that <span>Henry's body eliminated the antibiotic at half of the rate at which Greg's body eliminated the antibiotic.</span>
Answer: 10:15 Simplified: 2:3
Step-by-step explanation:
Answer:
2(4x + 1)(x + 1)
Step-by-step explanation:
Given
8x² + 10x + 2 ← factor out 2 from each term
= 2(4x² + 5x + 1)
To factor the quadratic
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 4 × 1 = 4 and sum = + 5
The factors are + 1 and + 4
Use these factors to split the x - term
4x² + x + 4x + 1 ( factor the first/second and third/fourth terms )
= x(4x + 1) + 1 (4x + 1) ← factor out (4x + 1)
= (4x + 1)(x + 1), thus
4x² + 5x + 1 = (4x + 1)(x + 1) and
8x² + 10x + 2 = 2(4x + 1)(x + 1) ← in factored form
1. (c) 125/12
2. (a) 16
hope it helps