Total capacity = sum of the individual production capacities.
Here,
Total capacity = sum of f(m) = (m + 4)^2 + 100 and g(m) = (m + 12)^2 − 50.
Then f(m) + g(m) = (m + 4)^2 + 100 + (m + 12)^2 − 50.
We must expand the binomial squares in order to combine like terms:
m^2 + 8 m + 16 + 100
+m^2 + 24m + 144 - 50
---------------------------------
Then f(m) + g(m) = 2m^2 + 32m + 160 + 50
f(m) + g(m) = 2m^2 + 32m + 210, where m is the number of
minutes during which the two machines operate.
Answer:
The product is:
![\left[\begin{array}{cc}15 & 14\\-1 & 9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D15%20%26%2014%5C%5C-1%20%26%209%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
For this problem you need to multiply the first row only for the two first column of the others matrix and get the desired result:
![\left[\begin{array}{ccc}1&3&1\\-2&1&0\end{array}\right] \times \left[\begin{array}{cc}2&-2\\3&5\\4&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%261%5C%5C-2%261%260%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-2%5C%5C3%265%5C%5C4%261%5Cend%7Barray%7D%5Cright%5D)

So the value of the element in the position
is 15

So the value of the element in the position
is 14
Then with these two values you can determinate the result matrix.
![\left[\begin{array}{cc}15 & 14\\-1 & 9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D15%20%26%2014%5C%5C-1%20%26%209%5Cend%7Barray%7D%5Cright%5D)
Answer:
kong gusto mawala yong module mo pokpok mo sa ulo mo tanga
8/12 because 3/4 is equal to 9/12 and there was 1/12 left so 8/12
Need to take 25 mg times 18% then times it by 4 then times it again by .01