1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly_w [17]
3 years ago
12

Are the polygons similar if they are right a similarity statement and give the scale factor the figure is not drawn to scale

Mathematics
2 answers:
likoan [24]3 years ago
7 0
The second one JKML ~ PQRS; 8:4.8
Komok [63]3 years ago
5 0

Answer:

JKLM is similar to PQRS and the scale factor is \frac{8}{4.8}

Step-by-step explanation:

we know that

If two figures are similar, then the ratio of its corresponding sides is equal and this ratio is called the scale factor

Verify

\frac{8}{4.8}=\frac{2.5}{1.5}

1.667=1.667 -------> is true

therefore

The polygons are similar and the scale factor is equal to \frac{8}{4.8}

You might be interested in
Least common multiple of 70, 60, and 50
goldenfox [79]
70 = 7 x 2 x 5
60 = 2² x 3 x 5
50 =  2 x 5²
 
LCM = 2 x 3 x 5 x 7  = 210

Answer: LCM = 210
3 0
3 years ago
Use the rectangle below as an example
velikii [3]

Answer:

sorry man or man drawing a little more about the job than the rest on any of these

5 0
2 years ago
156787 can go into 4 how many times???????
kiruha [24]

39196.75 is the answer to your problem

8 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
the train travels 16 miles in 20 minutes, at this rate how, many muients will it take to travel12 miles
lana66690 [7]

Answer:

sorry if this is confusing

Step-by-step explanation:

16 miles = 12 miles

------------ ----------------

20 mins. how many mins?

16 = 12 cross multiply 16? = 240 divide by 16 240 divided by 16 = 15 miles

20 ? because 15 x 16 = 240

8 0
3 years ago
Other questions:
  • A study of telephones and the risk of brain cancer looked at a group of 469 people who have brain cancer. The investigators matc
    5·1 answer
  • Do number 36 only, thx!
    8·1 answer
  • A children’s sandbox is x feet deep, (10-x) feet wide and (14-x) feet long. What expression would represent the perimeter of the
    5·1 answer
  • Solve the system of equations.
    11·1 answer
  • Write the percent as a fraction or mixed number in simplest form.<br><br> 148%
    14·2 answers
  • Match the reasons with the statements in the proof.
    13·2 answers
  • Solve problems <br>5 1/2×3 1/3​
    8·1 answer
  • Find AB If AC = 12 and BC = 35
    15·1 answer
  • A worker at a farm supply company in Franklin County is mixing up a 420-kilogram batch of its special grain blend for horses, wh
    11·1 answer
  • Ariel wants to write 8 entries for her blog. After 2 hours,she has 5 entries left. After 4 hours, she has 2 entries left. Which
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!