Answer:
(a) 
(b) 3
(c) 27
(d)
Step-by-step explanation:
We need simplify the given expressions.
(a)
Consider the given expression is


Using the properties of exponents we get
![[\because (a^m)^n=a^{mn}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28a%5Em%29%5En%3Da%5E%7Bmn%7D%5D)
![[\because a^ma^n=a^{m+n}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5Ema%5En%3Da%5E%7Bm%2Bn%7D%5D)

(b)
Consider the given expression is


Using the properties of exponents we get
![[\because (a^m)^n=a^{mn}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28a%5Em%29%5En%3Da%5E%7Bmn%7D%5D)
![[\because a^ma^n=a^{m+n}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5Ema%5En%3Da%5E%7Bm%2Bn%7D%5D)


(c)
Consider the given expression is

Using the properties of exponents we get
![[\because a^{-n}=\dfrac{1}{a^n}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5E%7B-n%7D%3D%5Cdfrac%7B1%7D%7Ba%5En%7D%5D)

(d)
Consider the given expression is

Using the properties of exponents we get
![[\because a^ma^n=a^{m+n}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5Ema%5En%3Da%5E%7Bm%2Bn%7D%5D)

![[\because a^{-n}=\dfrac{1}{a^n}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5E%7B-n%7D%3D%5Cdfrac%7B1%7D%7Ba%5En%7D%5D)
Answer:
It would be answer A.
Step-by-step explanation:
Don't be lazy, use paper or pen, or type it into a calculator!
The answer is -48.89
Answer:
0.98 seconds
Step-by-step explanation:
We assume the height of the volleyball is described by the equation for ballistic motion. We want to find the time it takes for the height to become zero.
__
<h3>motion equation</h3>
The general form of the equation of height for ballistic motion is ...

The coefficient 16 in the equation is an approximation of 1/2g, where g is the acceleration due to gravity in ft/s². This means the units of time and distance are expected to be seconds and feet.
For the problem at hand, the initial velocity and height are 10.5 ft/s and 5 ft. Then the height equation is ...
h(t) = -16t² +10.5t +5
__
<h3>reaction time</h3>
Marsha has until the ball hits the ground to react to the serve. To find out how long that is, we need to solve the height equation for t when h=0. This is most easily done using the quadratic formula with ...
The solution is ...

The positive solution is ...
t ≈ 0.976327 ≈ 0.98
Marsha has about 0.98 seconds to react before the volleyball hits the ground.
_____
<em>Additional comment</em>
After about 0.33 seconds, Marsha knows she doesn't need to react at all. The serve will not clear the net. Its maximum height is about 6' 8 5/8". A women's volleyball net is 7' 4 1/8" high. Jennifer's serve velocity must be at least 12.3 ft/s for the ball to go over the net. With that upward velocity, Marsha has about 1.06 seconds to react.
The answer is -9
Hope it helped