The first thing we must do in this case is find the derivatives:
y = a sin (x) + b cos (x)
y '= a cos (x) - b sin (x)
y '' = -a sin (x) - b cos (x)
Substituting the values:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
We rewrite:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
sin (x) * (- a-b-7a) + cos (x) * (- b + a-7b) = sin (x)
sin (x) * (- b-8a) + cos (x) * (a-8b) = sin (x)
From here we get the system:
-b-8a = 1
a-8b = 0
Whose solution is:
a = -8 / 65
b = -1 / 65
Answer:
constants a and b are:
a = -8 / 65
b = -1 / 65
8 ÷ (7 - 9) * ( 4 + (-4) ) <--- notice that bolded part.
4 + (-4) = 4 - 4 = 0.
after that, you're pretty much dividing and multiplying by 0, so
whatever ÷ whatever * whatever * 0 = 0.
Answer: y = 1x^2 - 12x + 15
Step-by-step explanation:
Answer:
it b
Step-by-step explanation:
Answer:
20.25
Step-by-step explanation:
Percentage solution with steps:
Step 1: Our output value is 135.
Step 2: We represent the unknown value with $x$
.
Step 3: From step 1 above,$135=100\%$
.
Step 4: Similarly, $x=15.\%$
.
Step 5: This results in a pair of simple equations:
$135=100\%(1)$.
$x=15.\%(2)$
.
Step 6: By dividing equation 1 by equation 2 and noting that both the RHS (right hand side) of both
equations have the same unit (%); we have
$\frac{135}{x}=\frac{100\%}{15.\%}$
Step 7: Again, the reciprocal of both sides gives
$\frac{x}{135}=\frac{15.}{100}$
$\Rightarrow x=20.25$Therefore, $15.\%$ of $135$ is
sorry if it took to long have a great day and brainliest is appreciated!!!!!