Ratios are proportional if they represent the same relationship. One way to see if two ratios are proportional is to write them as fractions and then reduce them. If the reduced fractions are the same, your ratios are proportional. To see this process in action, check out this tutorial!
:
Total tickets sold = 800
Total revenue = $3775
Ticket costs:
$3 per child,
$8 per adult,
$5 per senior citizen.
Of those who bought tickets, let
x = number of children
y = number of adults
z = senior citizens
Therefore
x + y + z = 800 (1)
3x + 8y + 5z = 3775 (2)
Twice as many children's tickets were sold as adults. Therefore
x = 2y (3)
Substitute (3) into (1) and (2).
2y + y + z = 800, or
3y + z = 800, or
z = 800 - 3y (4)
3(2y) + 8y + 5z = 3775, or
14y + 5z = 3775 (5)
Substtute (4) nto (5).
14y + 5(800 - 3y) = 3775
-y = -225
y = 225
From (4), obtain
z = 800 - 3y = 125
From (3), obtain
x = 2y = 450
Answer:
The number of tickets sold was:
450 children,
225 adults,
125 senior citizens.
Answer:
300 mg
Step-by-step explanation:
900 mg spilled 1/3
1/3 * 900 = 900/3 = 300mg lost
Answer:
D
Step-by-step explanation:
If its right let me know I think this is right
Answer:
not sure ia may give wrong answer