1. Divergent Plate Boundaries or Constructive Plate Boundaries. This is where two plates separate. Ridges are created when mantle convection rises up beneath it, with extreme heat, the crust will thin, and the igneous material beneath will eventually.
<span>2. Divergent, or destructive plate margins cause volcanoes. As the more dense plate subducts, it will melt at depth and the water driven off, will lower the melting point of the overlying mantle wedge, this will create a type of magma. Volcanic Island Arcs are formed at oceanic-oceanic destructive plate margins. The hot, bouyant magma, is less dense that the surrounding rock, so will rise to the surface, and will collect beneath the plate that hasn't been subducted. It will then, under increased pressure erupt under the sea. Over thousands to millions of years, it will keep erupting, to form islands. </span>
<span>3. Earthquakes are mainly caused at Transform boundaries and Divergent boundaries. At transform boundaries, two plates sliding past eachother, and the build up of friction could lead to earthquakes, if enough stress is built up and then suddenly released, then the energy is released as seismic waves or an earthquake. At divergent boundaries, earthquakes happen along the Benioff zone which is the slope of the subducting plate that is slowly being dragged into the mantle by mantle convection and slab pull. </span>
<span>4. Divergent boundaries cause orogenisis (mountain building). But only the continental-continental margin where two continental plates are colliding. Because they are the same density, they don't subduct, but they buckle, compress and uplift to form mountains. Just like the himilayas, when the Indian plate collided with the eurasian plate.</span>
The answer is dependent variable.
Correct order is: organism, population, community, ecosystem, biosphere.
I believe it is oxygen and carbon dioxide
Coastal Ocean!
Explanation: It’s important to remember that although the ocean produces at least 50 percent of the oxygen on Earth, roughly the same amount is consumed by marine life. Like animals on land, marine animals use oxygen to breathe, and both plants and animals use oxygen for cellular respiration. Oxygen is also consumed when dead plants and animals decay in the ocean.
This is particularly problematic when algal blooms die and the decomposition process uses oxygen faster than it can be replenished. This can create areas of extremely low oxygen concentrations, or hypoxia. These areas are often called dead zones, because the oxygen levels are too low to support most marine life.
NOAA’s National Centers for Coastal Ocean Science conducts extensive research and forecasting on algal blooms and hypoxia to lessen the harm done to the ocean ecosystem and human environment.