<em>so</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>2</em><em>8</em><em> </em><em>hours</em><em>.</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
Answer:
A rectangle is bounded by the x-axis and the semicircle y = √(25 - x²). What length and width should the rectangle have so that its area is a maximum?
Step-by-step explanation:
Solution is where the 2 lines intersect
I would say the answer is 3rd option, whre both lines pass through that point
C = 8.5x + 6y
Rearrange the equation by making the side with x, be on the Left Hand Side (LHS)
8.5x + 6y = C
Subtract 6y from both sides of the equation
8.5x + 6y - 6y = C - 6y
8.5x = C - 6y
Divide both sides of the equation by 8.5
(8.5x/8.5) = (C - 6y)/8.5
x = (C - 6y)/8.5
I hope this helped.
X=-263/10 which is also the root to the equation.