Answer:

Step-by-step explanation:
We have been given an equation
. We are asked to find the zeros of equation by factoring and then find the line of symmetry of the parabola.
Let us factor our given equation as:

Dividing both sides by 2:

Splitting the middle term:




Using zero product property:



Therefore, the zeros of the given equation are
.
We know that the line of symmetry of a parabola is equal to the x-coordinate of vertex of parabola.
We also know that x-coordinate of vertex of parabola is equal to the average of zeros. So x-coordinate of vertex of parabola would be:

Therefore, the equation
represents the line of symmetry of the given parabola.
Answer:
see explanation
Step-by-step explanation:
Given
4
- 5a² + 1 = 0
Use the substitution u = a², then equation is
4u² - 5u + 1 = 0
Consider the product of the coefficient of the u² term and the constant term
product = 4 × 1 = 4 and sum = - 5
The factors are - 4 and - 1
Use these factors to split the u- term
4u² - 4u - u + 1 = 0 ( factor the first/second and third/fourth terms )
4u(u - 1) - 1(u - 1) = 0 ← factor out (u - 1) from each term
(u - 1)(4u - 1) = 0
Equate each factor to zero and solve for u
u - 1 = 0 ⇒ u = 1
4u - 1 = 0 ⇒ 4u = 1 ⇒ u = 
Convert u back into terms of a, that is
a² = 1 ⇒ a = ± 1
a² =
⇒ a = ± 
Solutions are a = ± 1 , a = ± 
Given:
Polynomial is
.
To find:
The sum of given polynomial and the square of the binomial (x-8) as a polynomial in standard form.
Solution:
The sum of given polynomial and the square of the binomial (x-8) is

![[\because (a-b)^2=a^2-2ab+b^2]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28a-b%29%5E2%3Da%5E2-2ab%2Bb%5E2%5D)

On combining like terms, we get


Therefore, the sum of given polynomial and the square of the binomial (x-8) as a polynomial in standard form is
.
Answer:
C=44/2
c=22
Two time c is equal to 44
one time c is equal to 22
1/4 = .25
1/2 = .50
If you multiply 1/4 by 2, it is equal to 2/4 or .50 .
If you want to simplify, 2/4 divided by 2 equals 1/2.
Actual equivalent fraction: 2/4
Simplified: 1/2
Hope I was able to help!