12/3 is rational
DescriptionIn mathematics, a rational number is a number that can be expressed as the quotient or fraction
Answer:
Step-by-step explanation:
The question says,
A roulette wheel has 38 slots, of which 18 are black, 18 are red,and 2 are green. When the wheel is spun, the ball is equally likely to come to rest in any of the slots. One of the simplest wagers chooses red or black. A bet of $1 on red returns $2 if the ball lands in a red slot. Otherwise, the player loses his dollar. When gamblers bet on red or black, the two green slots belong to the house. Because the probability of winning $2 is 18/38, the mean payoff from a $1 bet is twice 18/38, or 94.7 cents. Explain what the law of large numbers tells us about what will happen if a gambler makes very many betson red.
The law of large numbers tells us that as the gambler makes many bets, they will have an average payoff of which is equivalent to 0.947.
Therefore, if the gambler makes n bets of $1, and as the n grows/increase large, they will have only $0.947*n out of the original $n.
That is as n increases the gamblers will get $0.947 in n places
More generally, as the gambler makes a large number of bets on red, they will lose money.
Answer:
4 weekdays and 2 weekends.
Step-by-step explanation:
6 days.
x = weekdays
y = weekends
7x = amount with weekdays
12y = amount with weekends
7x + 12y = 52, total
x + y = 6, amount of days
solve double variable equation
x = 6 - y, plug in to 1st equation
7(6 - y) + 12y = 52
42 - 7y + 12y = 52
5y = 10
y = 2 weekends
2 + x = 6
x = 4 weekdays
Answer:
The z-score for SAT exam of junior is much small than his ACT score. This means he performed well in his ACT exam and performed poor in his SAT exam.
Step-by-step explanation:
Mean SAT scores = 1026
Standard Deviation = 209
Mean ACT score = 20.8
Standard Deviation = 4.8
We are given SAT and ACT scores of a student and we have to compare them. We cannot compare them directly so we have to Normalize them i.e. convert them into such a form that we can compare the numbers in a meaningful manner. The best way out is to convert both the values into their equivalent z-scores and then do the comparison. Comparison of equivalent z-scores will tell us which score is higher and which is lower.
The formula to calculate the z-score is:

Here, μ is the mean and σ is the standard deviation. x is the value we want to convert to z score.
z-score for junior scoring 860 in SAT exam will be:

z-score for junior scoring 16 in ACT exam will be:

The z-score for SAT exam of junior is much small than his ACT score. This means he performed well in his ACT exam and performed poor in his SAT exam.