Answer:
about 1.56637 radians ≈ 89.746°
Step-by-step explanation:
The reference angle in radians can be found by the formula ...
ref angle = min(mod(θ, π), π -mod(θ, π))
Equivalently, it is ...
ref angle = min(ceiling(θ/π) -θ/π, θ/π -floor(θ/π))×π
<h3>Application</h3>
When we divide 11 radians by π, the result is about 3.501409. The fractional part of this quotient is more than 1/2, so the reference angle will be ...
ref angle = (1 -0.501409)π radians ≈ 1.56637 radians ≈ 89.746°
__
<em>Additional comment</em>
For calculations such as this, you need to use the most accurate value of pi available. The approximations 22/7 or 3.14 are not sufficiently accurate to give good results.
Im pretty sure that the answer it is A. 7
because if you subtract 2 from 7 you get 5
☆What is the prime factorization of 108?
To find the prime factorization, first divide 108 by 2.

You have 2 numbers: 54 and 2. 2 is a prime number and 54 isn't. Divide 54 by 2 until every factor of 54 is prime.
★ Prime number collection: 2

Add 2 to the "prime number collection". Divide 27 by factors until every factor you find is prime.
★ Prime number collection: 2, 2

Add 3 to the "prime number collection". Divide 9 by a factor of it to find more prime numbers.
★ Prime number collection: 2, 2, 3

The two 3's are prime. No more dividing! Add those to the "prime number collection".
★ Prime number collection: 2, 2, 3, 3, 3
Multiply all the numbers in your "prime number collection".
