1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
13

need help.    solve for y.  try factoring first if not possible or difficult use quadratic formula.               y²-6y+6=0

Mathematics
2 answers:
shutvik [7]3 years ago
6 0
y^2-6y+6=0\\
y^2-6y+9-3=0\\
(y-3)^2=3\\
|y-3|=\sqrt3\\
y-3=\sqrt3 \vee y-3=-\sqrt3\\
y=3+\sqrt3 \vee y=3-\sqrt3
lbvjy [14]3 years ago
3 0
y^2-6y+6=0\\ \\a=1 , \ b=-6, \ c=6 \\ \\\Delta =b^2-4ac = (-6)^2 -4\cdot1\cdot6 = 36-24=12\\ \\\sqrt{\Delta }= \sqrt{12}=\sqrt{4\cdot 3}=2\sqrt{3} \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{6-2\sqrt{3}}{2 }=\frac{2( 3- \sqrt{3})}{2}= 3- \sqrt{3}

x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{6+2\sqrt{3}}{2 }=\frac{2( 3+ \sqrt{3})}{2}= 3+ \sqrt{3}
 

You might be interested in
What is the square root of 4
Masja [62]

Answer:

√4 = 2

Because 2 × 2 = 4

If you want to get square root of any number find the number which you can multiply two times to give you that certain number

8 0
3 years ago
URGENT!
Tamiku [17]
Slope=y2-y1/x2-x1
Slope=1.2-0/2-0
Slope= 0.6
3 0
3 years ago
Read 2 more answers
The graph of quadratic parent function f was transformed to create the graph of
Vera_Pavlovna [14]

Answer:H

Step-by-step explanation:

Y= (x+2)^2-5

2 to the left x+2=0 x=-2

5 dpwn

5 0
3 years ago
Solve the equation ?
Morgarella [4.7K]
6m+1=-23.  Do the inverse operation of adding 1 which is to subtract 1 to both sides =====> 6m+1-1= -23-1

You divide by 6 both sides  
6m/6=-24/6

m= -4


Brainliest?
3 0
4 years ago
Use calculus to find the absolute maximum and minimum values of the function. (round all answers to three decimal places.) f(x)
Allisa [31]
Part A:

Given the function f(x)=x+2\cos(x), the absolute maximum or minimum occurs when f'(x)=0.

f'(x)=0 \\  \\ \Rightarrow1-2\sin{x}=0 \\  \\ \Rightarrow2\sin{x}=1 \\  \\ \Rightarrow\sin{x}= \frac{1}{2}  \\  \\ \Rightarrow x=\sin^{-1}{\frac{1}{2}}= \frac{\pi}{6}

Using the second derivative test,

f''(x)=-2cosx \\  \\ \Rightarrow f''\left( \frac{\pi}{6} \right)=-2\cos{\left( \frac{\pi}{6} \right)}=-1.732

Since the second derivative gives a negative number, the given function has a maximum point at x=\frac{\pi}{6}.

And the maximum point is given by:

f\left( \frac{\pi}{6} \right)=\frac{\pi}{6}+2\cos\left( \frac{\pi}{6} \right) \\  \\ =0.5236+2(0.8660)=0.5236+1.732 \\  \\ =\bold{2.256}

i.e. \left(\frac{\pi}{6},\ 2.256\right)



Part B:

Given the function f(x)=e^{-x}-e^{-2x}, the absolute maximum or minimum occurs when f'(x)=0.

f'(x)=0 \\ \\ \Rightarrow-e^{-x}+2e^{-2x}=0 \\ \\ \Rightarrow2e^{-2x}=e^{-x} \\ \\ \Rightarrow2e^{-x}=1 \\ \\ \Rightarrow e^{-x}=\frac{1}{2} \\  \\ \Rightarrow-x=\ln \frac{1}{2}=-0.6931 \\  \\ \Rightarrow x=0.6931

Using the second derivative test,

f''(x)=e^{-x}-4e^{-2x} \\ \\ \Rightarrow f''(0.6931)=e^{-0.6931}-4e^{-2(0.6931)} \\  \\ =0.5-4e^{-1.386}=0.5-4(0.25)=0.5-1 \\  \\ =-0.5

Since the second derivative gives a negative number, the given function has a maximum point at x=0.6931.

And the maximum point is given by:

f(0.6931)=e^{-0.6931}-e^{-2(0.6931)} \\  \\ =0.5-e^{-1.386}=0.5-0.25=\bold{0.25}

i.e. (0.693, 0.25)
3 0
3 years ago
Other questions:
  • Prime factorization practice all factors 1.- 25 2.- 49 3.- 7 4.- 13 5.- 24 6.- 48 7.- 168
    14·1 answer
  • In Exercises 1-20, find the midpoint M of the segment with the given endpoints.
    10·1 answer
  • Find the lower bounds for the following weights?
    15·1 answer
  • 2. Tell whether the lines are parallel, perpendicular, or neither.
    8·1 answer
  • it takes bill 1hour 24 minutes to drive to his brothers house. what time will he arrive if he leaves 6:19
    9·2 answers
  • How many square tiles with sides 3 feet log would be a ragged to cover the floor of 10' x 12' room
    11·1 answer
  • Consider the diagram below. Point E is (-1,8) Point F is (5,-2). What is the distance of the line segment
    12·1 answer
  • Lorenzo wants to buy a guitar. The original price is $70. What is the sale price?
    13·1 answer
  • Which expression shows the prime factorization of 66?
    7·1 answer
  • What is true about the integer -3?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!