what a minute
i gonna go to the google and search for you
Answer: Genetic engineering is a tool in biotechnology wgich is beneficial to both the organism, the society and the environment.
What is genetic engineering?
Genetic engineering is a technique in biotechnology in which genes of organisms are manipulated to produce desirable effects in the organism.
Genetic engineering provided benefit to both the organism as well as the society.
To the organism, it gives the organism an advantage of increased chances for survival, for example producing disease-resistant crops.
To the society, it enhances food production as plants produce more food when healthy.
To the environment, it enables these disease to disappear as they can no longer affect organisms.
Explanation:
Answer:
Option D, 4,2,1, 3
Explanation:
The mitochondrial respiratory chain (MRC) comprises of four membrane bound complexes and it involves the following steps
a) RC complexes (RCC) I and II reduces the RC’s equivalent where RCCI i.e receives electron from the NADH.
b) These electrons are then transferred to the flavin mononucleotide factor and then passed on to the Fe-S embedded cluster .
c) These electron reduces the coenzyme Q to ubiquinol
d) With in the inner mitochondrial membrane (IMM), protons are trans located from IMM to the intermembrane space (IMS)
e) RC complex II then transfer electron from succinate to the cofactor FAD
f) From FAD proton are transferred to the FeS cluster and on the other hand electron move from QH2 to the RC complex III
g) This RC complex III give its electrons to the cytochrome and they are further passes on to the RC complex IV
h) With four redox centers, the terminal RC complex translocate protein by using energy produced in electron transfer thereby converting oxygen into water.
Hence, the correct option is D
D, a net transfer of energy
Answer:
In this case, it is likely that the polypeptide chain assumed an alpha helix configuration because the lipid bilayer did not have beta-barrel proteins.
Explanation:
A polypeptide chain is naturally polar, however, a lipid bilayer is naturally non-polar. This makes it difficult and even prevents the polypeptide chain from crossing a lipid bilayer, since the composition of these two elements does not allow them to mix. In that case, the polypeptide chain has two options to take to successfully cross the lipid bilayer.
The first option that the polypeptide chain has is to allow the creation of twisted beta sheets in the shape of a closed barrel in its structure. This only works if the lipid bilayer has beta barrel proteins in its composition to act as a transport channel for the polypeptide chain. However, few lipid layers have this protein.
Most likely, the polypeptide chain assumes an alpha helix conformation to cross lipid bilayers that do not have beta-barrel proteins. By assuming the beta conformation, the polypeptide chain reinforces the hydrogen bonds present in its composition, allowing it to cross the lipid bilayer without having its conformation and structure disassembled.