The system of equations that represent the situation are 1.20R + 2B = 70, and R + B = 90.
<h3>What are the system of equations?</h3>
The system of equations are sets of equations that have to be solved simultaneously in order to determine their required values. They are often referred to as simultaneous equations.
To learn more about simultaneous equations, please check: brainly.com/question/25875552
For the given equation;

We shall begin by expanding the parenthesis on the left side, after which we would combine all terms on and move all of them to the left side, which shall yield a quadratic equation. Then we shall solve.
Let us begin by expanding the parenthesis;

Now that we have expanded the left side of the equation, we would have;

We shall now solve the resulting quadratic equation using the quadratic formula as follows;
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{Where;} \\ a=9,b=-30,c=150 \\ x=\frac{-(-30)\pm\sqrt[]{(-30)^2-4(9)(150)}}{2(9)} \\ x=\frac{30\pm\sqrt[]{900-5400}}{18} \\ x=\frac{30\pm\sqrt[]{-4500}}{18} \\ x=\frac{30\pm\sqrt[]{-900\times5}}{18} \\ x=\frac{30\pm\sqrt[]{-900}\times\sqrt[]{5}}{18} \\ x=\frac{30\pm30i\sqrt[]{5}}{18} \\ \text{Therefore;} \\ x=\frac{30+30i\sqrt[]{5}}{18},x=\frac{30-30i\sqrt[]{5}}{18} \\ \text{Divide all through by 6, and we'll have;} \\ x=\frac{5+5i\sqrt[]{5}}{3},x=\frac{5-5i\sqrt[]{5}}{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20%5Ctext%7BWhere%3B%7D%20%5C%5C%20a%3D9%2Cb%3D-30%2Cc%3D150%20%5C%5C%20x%3D%5Cfrac%7B-%28-30%29%5Cpm%5Csqrt%5B%5D%7B%28-30%29%5E2-4%289%29%28150%29%7D%7D%7B2%289%29%7D%20%5C%5C%20x%3D%5Cfrac%7B30%5Cpm%5Csqrt%5B%5D%7B900-5400%7D%7D%7B18%7D%20%5C%5C%20x%3D%5Cfrac%7B30%5Cpm%5Csqrt%5B%5D%7B-4500%7D%7D%7B18%7D%20%5C%5C%20x%3D%5Cfrac%7B30%5Cpm%5Csqrt%5B%5D%7B-900%5Ctimes5%7D%7D%7B18%7D%20%5C%5C%20x%3D%5Cfrac%7B30%5Cpm%5Csqrt%5B%5D%7B-900%7D%5Ctimes%5Csqrt%5B%5D%7B5%7D%7D%7B18%7D%20%5C%5C%20x%3D%5Cfrac%7B30%5Cpm30i%5Csqrt%5B%5D%7B5%7D%7D%7B18%7D%20%5C%5C%20%5Ctext%7BTherefore%3B%7D%20%5C%5C%20x%3D%5Cfrac%7B30%2B30i%5Csqrt%5B%5D%7B5%7D%7D%7B18%7D%2Cx%3D%5Cfrac%7B30-30i%5Csqrt%5B%5D%7B5%7D%7D%7B18%7D%20%5C%5C%20%5Ctext%7BDivide%20all%20through%20by%206%2C%20and%20we%27ll%20have%3B%7D%20%5C%5C%20x%3D%5Cfrac%7B5%2B5i%5Csqrt%5B%5D%7B5%7D%7D%7B3%7D%2Cx%3D%5Cfrac%7B5-5i%5Csqrt%5B%5D%7B5%7D%7D%7B3%7D%20%5Cend%7Bgathered%7D)
ANSWER:
Answer: 1/70
Step-by-step explanation:
This is a question that can also be interpreted as what is the probability of having the first number of a phone number to be 8 and the last number of the phone number to also be 8. This answer gives the fraction of the phone numbers that starts with 8 and end with 8.
Since three numbers (0,1,2) cannot start a phone number and we are left to pick from 7 numbers,
then the probability of figure "8" starting phone number = 1/7
Since all 10 numbers can possibly end a phone number,
then the probability of having figure "8" as the last digit of a phone number = 1/10
Hence probability of having "8" as the first and last digit of a phone number = fraction of total telephone numbers that begin with digit 8 and end with digit 8 = 1/7 × 1/10 = 1/70.
9514 1404 393
Answer:
29.15 in
Step-by-step explanation:
The area of a rectangle is given by the formula ...
A = LW
Filling in the given information, we can find the missing side length.
297 in² = (27 in)h
h = (297 in²)/(27 in) = 11 in
The length of the diagonal can be found from the Pythagorean theorem.
d² = 27² + 11² = 729 +121 = 850
d = √850 = 5√34 ≈ 29.15476
The length of the diagonal is about 29.15 inches.
I think the answer is 17.5 years