7/10 is equivalent to 3.5/5 is one
First you got to multiply 2x7=14x then multiply again 2x3=6 so the answer to the equation will be 2(7x+3)=(14x+6)
In an installment loan, a lender loans a borrower a principal amount P, on which the borrower will pay a yearly interest rate of i (as a fraction, e.g. a rate of 6% would correspond to i=0.06) for n years. The borrower pays a fixed amount M to the lender q times per year. At the end of the n years, the last payment by the borrower pays off the loan.
After k payments, the amount A still owed is
<span>A = P(1+[i/q])k - Mq([1+(i/q)]k-1)/i,
= (P-Mq/i)(1+[i/q])k + Mq/i.
</span>The amount of the fixed payment is determined by<span>M = Pi/[q(1-[1+(i/q)]-nq)].
</span>The amount of principal that can be paid off in n years is<span>P = M(1-[1+(i/q)]-nq)q/i.
</span>The number of years needed to pay off the loan isn = -log(1-[Pi/(Mq)])/(q log[1+(i/q)]).
The total amount paid by the borrower is Mnq, and the total amount of interest paid is<span>I = Mnq - P.</span>
Answer:
Fast ball challenge
Step-by-step explanation:
Given
Slow Ball Challenge




Fast Ball Challenge




Required
Which should he choose?
To do this, we simply calculate the expected earnings of both.
Considering the slow ball challenge
First, we calculate the binomial probability that he hits all 7 pitches

Where
--- pitches
--- all hits
--- probability of hit
So, we have:




Using a calculator:
--- This is the probability that he wins
i.e.

The probability that he lose is:
---- Complement rule


The expected value is then calculated as:


Using a calculator, we have:
Considering the fast ball challenge
First, we calculate the binomial probability that he hits all 3 pitches

Where
--- pitches
--- all hits
--- probability of hit
So, we have:



Using a calculator:
--- This is the probability that he wins
i.e.

The probability that he lose is:
---- Complement rule


The expected value is then calculated as:


Using a calculator, we have:

So, we have:
-- Slow ball
--- Fast ball
<em>The expected earnings of the fast ball challenge is greater than that of the slow ball. Hence, he should choose the fast ball challenge.</em>