Answer:
57
Step-by-step explanation:
Let c represent the number of children ($1.75 each) and a represent the number of adults ( $2.00 each).
We know that there were 340 people total, so c + a = 340. This implies that a = 340 - c
We also know that $1.75 c + $2.00 a = $609.25
By substituting a with 340 -c we have $1.75 c + $2.00 (340 -c) = $609.25
Use the distributive property to obtain $1.75 c + $680 - $2.00 c = $609.25
Subtract $680 from both sides and combine like terms to get - $0.25 c = -
$70.75
Now, divide both sides by -$0.25 to get c = 283, the number of children.
The number of adults is 340 - c or 340 - 283 = 57
Based on the characteristics of <em>linear</em> and <em>piecewise</em> functions, the <em>piecewise</em> function
is shown in the graph attached herein. (Correct choice: A)
<h3>How to determine a piecewise function</h3>
In this question we have a graph formed by two different <em>linear</em> functions. <em>Linear</em> functions are polynomials with grade 1 and which are described by the following formula:
y = m · x + b (1)
Where:
- x - Independent variable.
- y - Dependent variable.
- m - Slope
- b - Intercept
By direct observation and by applying (1) we have the following <em>piecewise</em> function:

Based on the characteristics of <em>linear</em> and <em>piecewise</em> functions, the <em>piecewise</em> function
is shown in the graph attached herein. (Correct choice: A)
To learn more on piecewise functions: brainly.com/question/12561612
#SPJ1
Answer:
x = -7
Step-by-step explanation:
First we find the slope using
m = ( y2-y1)/(x2-x1)
= ( -8 - 5)/( -7 - -7)
= (-8-5)/(-7+7)
= -13/0
This means the slope is undefined and the line is vertical
Vertical lines are in the form
x= constant and the constant is the x value of the points
x = -7
Answer:
E IS THE CORRECT ANSWER
The R-squared is 0.64 and it means that the dependent value explains 64% of the independent value in the simple regression analysis
Step-by-step explanation:
R-Squared value is a very important indicator in a regression analysis.
What does it measure?
It measures how close to the line of best fit are the data points. How good the fitted line is can be indicated by the value of the r-squared.
The maximum value it can take is 1 and at this value, there is a direct and complete relationship between the independent variable x and the dependent variable y. The value 1 represents an 100% relationship between both parties.
The r-squared has a value of between 0 and 100%. The closer to 100, the better the model while the closer to 100, the more faulty the model is. In fact, a value of 0 indicates no relationship at all between the dependent and the independent variable.
With an R-squared value of 0.64, the regression model works above average to explain that the dependent variable explains 64% of the independent value in the simple regression analysis.