1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhannawk [14.2K]
3 years ago
12

Aiden estimates the length is 7.2 but it’s 6.5 what’s the percent error

Mathematics
1 answer:
IrinaVladis [17]3 years ago
8 0

Percent error is 10.7%

Step-by-step explanation:

We need to find the percent error:

We are given:

Estimate value = 7.2

Actual value = 6.5

Percent Error=?

The formula used is:

Percent\,\,Error=\frac{Estimate\,\,value-Actual\,\,value}{Actual\,\,value}\times100\\

Putting values:

Percent\,\,Error=\frac{7.2-6.5}{6.5}\times100\\Percent\,\,Error=\frac{0.7}{6.5}\times100\\Percent\,\,Error=0.107\times100\\Percent\,\,Error=10.7%\\

So, Percent error is 10.7%

Keywords: Percent Error

Learn more about Percent Error at:

  • brainly.com/question/4625002
  • brainly.com/question/82877
  • brainly.com/question/1834017

#learnwithBrainly

You might be interested in
Explain how you can write 35% as the sum of two benchmark percents or as a multiple of a percent
OlgaM077 [116]

I'll just take the points thanks XD

3 0
3 years ago
Explain how numbers with a 5 in the ones place are not prime numbers
aleksandrvk [35]
Because they will always be divisible by 5
7 0
3 years ago
Read 2 more answers
Hozumi recorded the daily high temperatures for an 18-day period in the table shown please I need this really badly
mr Goodwill [35]

Answer:

the answer is letter A

Step-by-step explanation:

7 0
3 years ago
Simplify (5^1/3)^3.
pentagon [3]

Answer:

The correct option is C. 5

Therefore,

(5^{\frac{1}{3})^{3}\ =\ \d5

Step-by-step explanation:

Simplify

(5^{\dfrac{1}{3})^{3}=?

Solution:

Using Identity

(x^{a})^{b}=x^{(a\times b)}

So in the given expression

x = 5\\a=\dfrac{1}{3}\\\\b=3

Therefore,

(5^{\frac{1}{3})^{3}\ =\ \d5^{(\dfrac{1}{3}\times 3)}=\d5^{1}=\d5

Therefore,

(5^{\frac{1}{3})^{3}\ =\ \d5

6 0
3 years ago
Please answer correctly !!!!!!!!! Will<br> Mark brainliest !!!!!!!!!!!!!
il63 [147K]

Answer:

x=-\frac{-20+\sqrt{-20w+3600}}{10},\:x=-\frac{-20-\sqrt{-20w+3600}}{10}

Step-by-step explanation:

w=-5\left(x-8\right)\left(x+4\right)\\\mathrm{Expand\:}-5\left(x-8\right)\left(x+4\right):\quad -5x^2+20x+160\\w=-5x^2+20x+160\\Switch\:sides\\-5x^2+20x+160=w\\\mathrm{Subtract\:}w\mathrm{\:from\:both\:sides}\\-5x^2+20x+160-w=w-w\\Simplify\\-5x^2+20x+160-w=0\\Solve\:with\:the\:quadratic\:formula\\\mathrm{Quadratic\:Equation\:Formula:}\\\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=-5,\:b=20,\:c=160-w:\quad x_{1,\:2}=\frac{-20\pm \sqrt{20^2-4\left(-5\right)\left(160-w\right)}}{2\left(-5\right)}\\x=\frac{-20+\sqrt{20^2-4\left(-5\right)\left(160-w\right)}}{2\left(-5\right)}:\quad -\frac{-20+\sqrt{-20w+3600}}{10}\\x=\frac{-20-\sqrt{20^2-4\left(-5\right)\left(160-w\right)}}{2\left(-5\right)}:\quad -\frac{-20-\sqrt{-20w+3600}}{10}\\The\:solutions\:to\:the\:quadratic\:equation\:are\\x=-\frac{-20+\sqrt{-20w+3600}}{10},\:x=-\frac{-20-\sqrt{-20w+3600}}{10}

6 0
3 years ago
Other questions:
  • Suppose a triangle has two sides of length 32 and 35, and that the angle between these two sides is 120°. What is the length of
    7·1 answer
  • Find the standard form of x^2-4x 3
    13·1 answer
  • this table shows input and output values for a linear function f(x). What is the difference of outputs for any two inputs that a
    13·2 answers
  • Simplify -1/2+3-4x+5+3/2x
    12·1 answer
  • Helpp ill mark u as brainlist​
    5·1 answer
  • Determine the x and y intercepts for the equation 2x+4y=8
    15·1 answer
  • Please help me complete this quiz lol
    7·1 answer
  • A long year end status report for work is 136 pages long. You need to print 19 copies for a meeting next week. How much is the p
    12·1 answer
  • Middle school algebra 1
    15·1 answer
  • Sled, pulled by dogs, travels at a constant speed of 52,5 miles in 5 hours. Which of the following equations usos a unit rate to
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!