Answer:
y - 7 = 16/13(x - 7)
General Formulas and Concepts:
<u>Alg I</u>
Point-Slope Form: y - y₁ = m(x - x₁)
Slope Formula: 
Step-by-step explanation:
<u>Step 1: Define</u>
Point (-6, -9)
Point (7, 7)
<u>Step 2: Find slope </u><u><em>m</em></u>
- Substitute:

- Add:

<u>Step 3: Write equation</u>
y - 7 = 16/13(x - 7)
<u><em>28.1 feet</em></u>
<u><em></em></u>
<em><u>explaination</u></em>
<u><em>\cos U = \frac{\text{adjacent}}{\text{hypotenuse}}=\frac{9.6}{x}</em></u>
<u><em>cosU= </em></u>
<u><em>hypotenuse</em></u>
<u><em>adjacent</em></u>
<u><em> </em></u>
<u><em> = </em></u>
<u><em>x</em></u>
<u><em>9.6</em></u>
<u><em> </em></u>
<u><em> </em></u>
<u><em>\cos 70=\frac{9.6}{x}</em></u>
<u><em>cos70= </em></u>
<u><em>x</em></u>
<u><em>9.6</em></u>
<u><em> </em></u>
<u><em> </em></u>
<u><em>x\cos 70=9.6</em></u>
<u><em>xcos70=9.6</em></u>
<u><em>Cross multiply.</em></u>
<u><em>\frac{x\cos 70}{\cos 70}=\frac{9.6}{\cos 70}</em></u>
<u><em>cos70</em></u>
<u><em>xcos70</em></u>
<u><em> </em></u>
<u><em> = </em></u>
<u><em>cos70</em></u>
<u><em>9.6</em></u>
<u><em> </em></u>
<u><em> </em></u>
<u><em>Divide each side by cos 70.</em></u>
<u><em>x=\frac{9.6}{\cos 70}=28.0685\approx 28.1\text{ feet}</em></u>
<u><em>x= </em></u>
<u><em>cos70</em></u>
<u><em>9.6</em></u>
<u><em> </em></u>
<u><em> =28.0685≈28.1 feet</em></u>
<u><em>Type into calculator and roundto the nearest tenth of a foot.</em></u>
The answer is: GCF(9, +7^3) = 1
Explanation:
9 = 3^2
+7 = +7×7
3 = 3
GCF = 1
9 / 1 = 9
+7 / 1 = 7
3 / 1 = 3
Answer:
Point C
Step-by-step explanation:
We want to reflect across the x axis
That means the y coordinate changes sign
Z = ( 5 1/2 , 3)
Z' = ( 5 1/2 , -3)
That is point C
Answer:
D) commutative property of addition