Answer:
<em>I've attached a picture of a unit circle with the quadrant labeled. </em>
<u>Calculate the degree of 5п 8 radians:</u>

<u>Locate the general location of 112.5° on the unit circle:</u>
It's between 120°(
) and 90°(
).
<u>Find the quadrant it lies in:</u>
Quadrant II
The principal sum is Rs.10,000
Step-by-step explanation:
The formula of compound interest is:
where:
- I is the interest
- P is the principal investment amount (the initial deposit or loan amount)
- r is the annual interest rate (decimal)
- n is the number of times that interest is compounded per unit t
- t is the time the money is invested or borrowed for
Jharana got Rs.1881 interest of certain sum for 2 year at 9%
compounded yearly
∵ I = Rs.1881
∵ r = (9/100) = 0.09
∵ n = 1 ⇒ compounded yearly
∵ t = 2 years
Substitute all of these values in the rule above
∴ 
∴ 1881 = P(1 + 0.09)² - P
∴ 1881 = P(1.09)² - P
∴ 1881 = 1.1881 P - P
∴ 1881 = 0.1881 P
- Divide both sides by 0.1881
∴ P = 10,000
The principal sum is Rs.10,000
Learn more:
You can learn more about the interest in brainly.com/question/11149751
#LearnwithBrainly
Answer:
There is no graph
Step-by-step explanation:
Answer:
Step-by-step explanation:
A triangle whose sides are 5-12-13 is a right angle triangle because the sides form a Pythagoras triple. This means that
Hypotenuse² = opposite side² + adjacent side²
If hypotenuse = 13,
Opposite side = 12, then we can determine one acute angle by applying the sine trigonometric ratio
Sin θ = opposite side/adjacent side
Sin θ = 12/13 = 0.923
θ = Sin^-1(0.923) = 67.4°
The other acute angle is
90 - 67.4 = 22.6°
For 9-12-15 triangle
Sin θ = 12/15 = 0.8
θ = Sin^-1(0.8) = 53.1°
The other acute angle is
90 - 53.1 = 36.9°
For 13- 14-15 triangle,
Sin θ = 14/15 = 0.933
θ = Sin^-1(0.933) = 68.9°
The other acute angle is
90 - 68.9 = 21.1°
Another example would be 3-4-5
Sin θ = 4/5 = 0.933
θ = Sin^-1(0.8) = 53.1°
The other acute angle is
90 - 53.1 = 36.9°