Answer:
When sulfurous, sulfuric, and nitric acids in polluted air and rain react with the calcite in marble and limestone, the calcite dissolves. In exposed areas of buildings and statues, we see roughened surfaces, removal of material, and loss of carved details. Stone surface material may be lost all over or only in spots that are more reactive.
Explanation:
You might expect that sheltered areas of stone buildings and monuments would not be affected by acid precipitation. However, sheltered areas on limestone and marble buildings and monuments show blackened crusts that have peeled off in some places, revealing crumbling stone beneath. This black crust is primarily composed of gypsum, a mineral that forms from the reaction between calcite, water, and sulfuric acid. Gypsum is soluble in water; although it can form anywhere on carbonate stone surfaces that are exposed to sulfur dioxide gas (SO2), it is usually washed away. It remains only on protected surfaces that are not directly washed by the rain.
Answer:
The correct answer will be option-D.
Explanation:
Calcium plays an important role in muscle contraction as they are released from the sarcoplasmic reticulum after they receive electric impulse.
Calcium triggers the muscle contraction cycle as these calcium ions bind to the troponin-tropomyosin complex. This binding exposes the myosin-binding site on the actin on which high energy myosin binds and cross-bridge is formed.
This cross-bridge formation causes the contraction of the sarcomere and therefore muscle contracts.
Thus, option-D is the correct answer.
Answer:
besh cornerhiiiiiiiiiiiiiiiii