The solution of
are 1 + 2i and 1 – 2i
<u>Solution:</u>
Given, equation is 
We have to find the roots of the given quadratic equation
Now, let us use the quadratic formula
--- (1)
<em><u>Let us determine the nature of roots:</u></em>
Here in
a = 1 ; b = -2 ; c = 5

Since
, the roots obtained will be complex conjugates.
Now plug in values in eqn 1, we get,

On solving we get,



we know that square root of -1 is "i" which is a complex number

Hence, the roots of the given quadratic equation are 1 + 2i and 1 – 2i
Number of questions worth 5 points = 10
Number of questions worth 2 points = 25
Further explanation:
The given system is a system of linear equations in two variables.
We will use the subsitution method to solve the system
Given equations are:

From equation no 1:

Putting x=35-y in second equation

Hence,
Number of questions worth 5 points = 10
Number of questions worth 2 points = 25
Keywords: Linear Equations, Substitution method
Learn more about substitution method at:
#LearnwithBrainly
Answer:
they are 16 and 4
Step-by-step explanation:
We can call the numbers x and y and we can write:
x - y = 12
x + y = 20
Adding these equations gives us 2x = 32 which means x = 16 and substituting this value into the first equation gives us y = 4.
The answer is <span>2(–4y + 13) – 3y = –29
Step 1: Express </span><span>x from the second equation
Step 2: Substitute x into the first equation:
The system of equations is:
</span><span>2x – 3y = –29
x + 4y = 13
Step 1:
</span>The second equation is: x + 4y = 13
Rearrange it to get x: x = - 4y + 13
Step 2:
The first equation is: 2x – 3y = –29
The second equation is: x = - 4y + 13
Substitute x from the second equation into the first one:
2(-4y + 13) - 3y = -29
Therefore, the second choice is correct.