Answer: 
<u>Step-by-step explanation:</u>
Convert everything to "sin" and "cos" and then cancel out the common factors.
![\dfrac{cot(x)+csc(x)}{sin(x)+tan(x)}\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg(\dfrac{sin(x)}{1}+\dfrac{sin(x)}{cos(x)}\bigg)\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg[\dfrac{sin(x)}{1}\bigg(\dfrac{cos(x)}{cos(x)}\bigg)+\dfrac{sin(x)}{cos(x)}\bigg]\\\\\\\bigg(\dfrac{cos(x)}{sin(x)}+\dfrac{1}{sin(x)}\bigg)\div\bigg(\dfrac{sin(x)cos(x)}{cos(x)}+\dfrac{sin(x)}{cos(x)}\bigg)](https://tex.z-dn.net/?f=%5Cdfrac%7Bcot%28x%29%2Bcsc%28x%29%7D%7Bsin%28x%29%2Btan%28x%29%7D%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%28%5Cdfrac%7Bsin%28x%29%7D%7B1%7D%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%5B%5Cdfrac%7Bsin%28x%29%7D%7B1%7D%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%5D%5C%5C%5C%5C%5C%5C%5Cbigg%28%5Cdfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%2B%5Cdfrac%7B1%7D%7Bsin%28x%29%7D%5Cbigg%29%5Cdiv%5Cbigg%28%5Cdfrac%7Bsin%28x%29cos%28x%29%7D%7Bcos%28x%29%7D%2B%5Cdfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%5Cbigg%29)


Answer:
D. 29
Step-by-step explanation:
180 - 151 = 29
Answer:
The statement is false.
Step-by-step explanation:
Let a and b represent two odd integers.
The average (A) is defined by:
A=
In order to prove the statement, you have to show that it's true for all odd integers. But, to disprove it, you just have to find a counterexample where the statement is false.
Notice that it is easier to try to find a counterexample.
For example, a=3 and b=5
A= 
The result of the average is even, therefore the statement is false.
The previous calculation is a counterexample.
Answer:
a. commutative
Step-by-step explanation:
rearranging of elements in an equation
The line, shadow and the height form a right angled triangle so we can apply the Pythagoras theorem here:-
11^2 = h^2 + 8^2 where h = height of the kite
h^2 = 11^2 - 8^2
h^2 = 57
h = 7.55 ft to the nearest foot Answer