Search it up and it’ll tell you what doctrines it applies too
Answer:
I am writing a Python function:
def is_maxheap(list):
#finds the length of the list
size=len(list)
#loop has a variable i which starts traversing from root til end of last #internal node
for i in range(int((size - 2) / 2) + 1):
if list[2 * i + 1] > list[i]: #If left child is greater than its parent then return #false
return False
if (2 * i + 2 < size and
list[2 * i + 2] > list[i]): #checks if right child is greater, if yes then #returns false
return False
return True
Explanation:
The function is_maxheap() traverses through all the internal nodes of the list iteratively. While traversing it checks if the node is greater than its children or not. To check the working of this function you can write a main() function to check the working on a given list. The main() function has a list of integers. It then calls is_maxheap() method by passing that list to the function. The program displays a message: "valid max heap" if the list represents valid max-heap otherwise it returns invalid max heap.
def main():
list = [10,7,8]
size = len(list)
if is_maxheap(list):
print("Valid Max Heap")
else:
print("Invalid Max Heap")
main()
The program along with its output is attached in a screenshot.
I’m sorry I do not speak that
Answer:
PROGRAM QuadraticEquation
Solver
IMPLICIT NONE
REAL :: a, b, c
;
REA :: d
;
REAL :: root1, root2
;
//read in the coefficients a, b and c
READ(*,*) a, b, c
WRITE(*,*) 'a = ', a
WRITE(*,*) 'b = ', b
WRITE(*,*) 'c = ', c
WRITE(*,*)
// computing the square root of discriminant d
d = b*b - 4.0*a*c
IF (d >= 0.0) THEN //checking if it is solvable?
d = SQRT(d)
root1 = (-b + d)/(2.0*a) // first root
root2 = (-b - d)/(2.0*a) // second root
WRITE(*,*) 'Roots are ', root1, ' and ', root2
ELSE //complex roots
WRITE(*,*) 'There is no real roots!'
WRITE(*,*) 'Discriminant = ', d
END IF
END PROGRAM QuadraticEquationSolver