Answer:
Correct options are A,B,D:
- The sample needs to be random, but we don't know if it is.
- The actual count of community residents who received the concert brochure by mail is too small.
- n(1 minus p‐hat) is not greater than 10.
Step-by-step explanation:
Concert marketing: The college’s performing arts center wanted to investigate why ticket sales for the upcoming season significantly decreased from last year’s sales. The marketing staff collected data from a survey of community residents. Out of the 110 people surveyed, only 7 received the concert brochure in the mail.
Answer:
the polynomial has degree 8
Step-by-step explanation:
Recall that the degree of a polynomial is given by the degree of its leading term (the term with largest degree). Recall as well that the degree of a term is the maximum number of variables that appear in it.
So, let's examine each of the terms in the given polynomial, and count the number of variables they contain to find their individual degrees. then pick the one with maximum degree, and that its degree would give the actual degree of the entire polynomial.
1) term
contains four variables "x" and two variables "y", so a total of six. Then its degree is: 6
2) term
contains two variables "x" and five variables "y", so a total of seven. Then its degree is: 7
3) term
contains four variables "x" and four variables "y", so a total of eight. Then its degree is: 8
This last term is therefore the leading term of the polynomial (the term with largest degree) and the one that gives the degree to the entire polynomial.
Answer:
A=L*W
Let w be width
L=(w+6)
40=(w+6)*w
40= w^{2} +6w
w^{2} +6w-40=0
w^{2}+10w-4w-40=0
w(w+10)-4(w+10)=0
(w-4)(w+10)=0
w=4
Length= 10 units
Width=4 units
Step-by-step explanation:
Hey there find an image attached..
Consider a homogeneous machine of four linear equations in five unknowns are all multiples of 1 non-0 solution. Objective is to give an explanation for the gadget have an answer for each viable preference of constants on the proper facets of the equations.
Yes, it's miles true.
Consider the machine as Ax = 0. in which A is 4x5 matrix.
From given dim Nul A=1. Since, the rank theorem states that
The dimensions of the column space and the row space of a mxn matrix A are equal. This not unusual size, the rank of matrix A, additionally equals the number of pivot positions in A and satisfies the equation
rank A+ dim NulA = n
dim NulA =n- rank A
Rank A = 5 - dim Nul A
Rank A = 4
Thus, the measurement of dim Col A = rank A = five
And since Col A is a subspace of R^4, Col A = R^4.
So, every vector b in R^4 also in Col A, and Ax = b, has an answer for all b. Hence, the structures have an answer for every viable preference of constants on the right aspects of the equations.