Answer:
yes because rational numbers are rational. they stay the same
Step-by-step explanation:
For this case we have the following functions:
h (x) = 2x - 5
t (x) = 6x + 4
Part A: (h + t) (x)
(h + t) (x) = h (x) + t (x)
(h + t) (x) = (2x - 5) + (6x + 4)
(h + t) (x) = 8x - 1
Part B: (h ⋅ t) (x)
(h ⋅ t) (x) = h (x) * t (x)
(h ⋅ t) (x) = (2x - 5) * (6x + 4)
(h ⋅ t) (x) = 12x ^ 2 + 8x - 30x - 20
(h ⋅ t) (x) = 12x ^ 2 - 22x - 20
Part C: h [t (x)]
h [t (x)] = 2 (6x + 4) - 5
h [t (x)] = 12x + 8 - 5
h [t (x)] = 12x + 3
Answer:
sometimes it be like that
Step-by-step explanation:
y
e
s
Answer:
I believe it's B!
Step-by-step explanation:
Not sure!!




Use the identity:
and solve for
. You get: 
Do the substitution on the left side to get:
