1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ch4aika [34]
3 years ago
14

If A^2=A, which matrix is matrix A

Mathematics
2 answers:
Ronch [10]3 years ago
8 0

Consider all options:

A.

\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right] \cdot \left[\begin{array}{cc}5&5\\-4&-4\end{array}\right] =\left[\begin{array}{cc}5\cdot 5+5\cdot (-4)&5\cdot 5+5\cdot (-4)\\-4\cdot 5+(-4)\cdot (-4)&-4\cdot 5+(-4)\cdot (-4)\end{array}\right]=

=\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right].

This option is true.

B.

\left[\begin{array}{cc}6&5\\5&6\end{array}\right] \cdot \left[\begin{array}{cc}6&5\\5&6\end{array}\right] =\left[\begin{array}{cc}6\cdot 6+5\cdot 5&6\cdot 5+5\cdot 6\\5\cdot 6+6\cdot 5&5\cdot 5+6\cdot 6\end{array}\right]=

=\left[\begin{array}{cc}61&60\\60&61\end{array}\right].

This option is false.

C.

\left[\begin{array}{cc}0.5&-0.5\\-0.5&0.5\end{array}\right] \cdot \left[\begin{array}{cc}0.5&-0.5\\-0.5&0.5\end{array}\right] =\left[\begin{array}{cc}0.5\cdot 0.5+(-0.5)\cdot (-0.5)&0.5\cdot (-0.5)+(-0.5)\cdot 0.5\\-0.5\cdot 0.5+0.5\cdot (-0.5)&-0.5\cdot (-0.5)+0.5\cdot 0.5\end{array}\right]=

=\left[\begin{array}{cc}0.5&-0.5\\-0.5&0.5\end{array}\right].

This option is true.

D.

\left[\begin{array}{cc}0.5&0.5\\-0.5&0.5\end{array}\right] \cdot \left[\begin{array}{cc}0.5&0.5\\-0.5&0.5\end{array}\right] =\left[\begin{array}{cc}0.5\cdot 0.5+0.5\cdot (-0.5)&0.5\cdot 0.5+0.5\cdot 0.5\\-0.5\cdot 0.5+0.5\cdot (-0.5)&-0.5\cdot 0.5+0.5\cdot 0.5\end{array}\right]=

=\left[\begin{array}{cc}0&0.5\\-0.5&0\end{array}\right].

This option is false.

E.

\left[\begin{array}{cc}-6&-6\\5&5\end{array}\right] \cdot \left[\begin{array}{cc}-6&-6\\5&5\end{array}\right] =\left[\begin{array}{cc}-6\cdot (-6)+(-6)\cdot 5&-6\cdot (-6)+(-6)\cdot 5\\5\cdot (-6)+5\cdot 5&5\cdot (-6)+5\cdot 5\end{array}\right]=

=\left[\begin{array}{cc}6&6\\-5&-5\end{array}\right].

This option is false.

Answer: correct options are A and C.

pentagon [3]3 years ago
7 0

Answer:

Options 1 and 3.

Step-by-step explanation:

By definition the product between two matrices is:

Let's suppose both matrices are 2x2,

A=\left[\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right]

B=\left[\begin{array}{cc}b_{11}&b_{12}\\b_{21}&b_{22}\end{array}\right]

The product between A and B is:

AB=\left[\begin{array}{cc}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{array}\right]

IMPORTANT: It's not the same AB then BA the results of both products are differents.

Now we are going to analyze every option:

A^2=A.A

Option 1:

A=\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right]

A.A=\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right] .\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right] =\\\\=\left[\begin{array}{cc}5.5+5(-4)&5.5+5(-4)\\(-4).5+(-4).(-4)&(-4).5+(-4)(-4)\end{array}\right] \\\\=\left[\begin{array}{cc}25-20&25-20\\-20+16&-20+16\end{array}\right] \\\\=\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right]=A

We can see that A.A=A then this is the correct option.

Option 2:

A=\left[\begin{array}{cc}6&5\\5&6\end{array}\right]\\\\A.A=\left[\begin{array}{cc}6&5\\5&6\end{array}\right].\left[\begin{array}{cc}6&5\\5&6\end{array}\right]\\\\=\left[\begin{array}{cc}6.6+5.5&6.5+5.6\\5.6+6.5&5.5+6.6\end{array}\right]\\\\=\left[\begin{array}{cc}36+25&30+30\\30+30&25+36\end{array}\right]\\\\=\left[\begin{array}{cc}61&60\\60&61\end{array}\right]\neq A

A.A\neq A Then this option is incorrect.

Option 3:

A=\left[\begin{array}{cc}0,5&-0,5\\-0,5&0,5\end{array}\right] \\\\A.A=\left[\begin{array}{cc}0,5&-0,5\\-0,5&0,5\end{array}\right].\left[\begin{array}{cc}0,5&-0,5\\-0,5&0,5\end{array}\right]\\\\=\left[\begin{array}{cc}0,5.0,5+(-0,5).(-0,5)&0,5.(-0,5)+(-0,5).(0,5)\\(-0,5).0,5+0,5.(-0,5)&(-0,5).(-0,5)+0,5.0,5\end{array}\right]\\\\=\left[\begin{array}{cc}0,25+0,25&-0,25-0,25\\-0,25-0,25&0,25+0,25\end{array}\right]\\\\=\left[\begin{array}{cc}0,5&-0,5\\-0,5&0,5\end{array}\right]= A

We can see that this option is also correct.

Option 4:

A=\left[\begin{array}{cc}0,5&0,5\\-0,5&0,5\end{array}\right] \\\\A.A=\left[\begin{array}{cc}0,5&0,5\\-0,5&0,5\end{array}\right].\left[\begin{array}{cc}0,5&0,5\\-0,5&0,5\end{array}\right]\\\\=\left[\begin{array}{cc}0,5.0,5+0,5.(-0,5)&0,5.0,5+0,5.0,5\\(-0,5).0,5+0,5.(-0,5)&(-0,5).0,5+0,5.0,5\end{array}\right]\\\\=\left[\begin{array}{cc}0,25-0,25&0,25+0,25\\-0,25-0,25&-0,25+0,25\end{array}\right]\\\\=\left[\begin{array}{cc}0&0,5\\-0,5&0\end{array}\right]\neq A

Then this option is incorrect.

Option 5:

A=\left[\begin{array}{cc}-6&-6\\5&5\end{array}\right]\\\\A.A=\left[\begin{array}{cc}-6&-6\\5&5\end{array}\right].\left[\begin{array}{cc}-6&-6\\5&5\end{array}\right]\\\\=\left[\begin{array}{cc}(-6).(-6)+(-6).5&(-6).(-6)+(-6).5\\5.(-6)+5.5&5.(-6)+5.5\end{array}\right]\\\\=\left[\begin{array}{cc}36-30&36-30\\-30+25&-30+25\end{array}\right]\\\\=\left[\begin{array}{cc}6&6\\-5&-5\end{array}\right]\neq A

Then this option is incorrect.

You might be interested in
What is a grouping symbol?
aalyn [17]

Answer:

Algebraic grouping symbols parentheses, brackets, braces, radicals, and fraction lines show where a group starts and ends, and help to establish the order used to apply math operations. Terms inside a grouping symbol have to be operated upon before they can be acted upon by anything outside the grouping symbol.

Thanks for letting me help!!

5 0
3 years ago
Read 2 more answers
2d + 3 when d =8 ​<br> im stuck on this question on a paper due monday!
xeze [42]

Answer:

19

Step-by-step explanation:

2d + 3

d = 8

2(8) + 3

multiply 2 and 8

16 + 3

add 16 and 3

= 19

4 0
2 years ago
Y=x^2+bx+c;(-2,3)
Maksim231197 [3]
<h3>Answer:  b = 4 and c = 7.</h3>

===============================================

Explanation:

Comparing y = x^2+bx+c to y = ax^2+bx+c, we see that a = 1.

The vertex given is (-2,3). In general, the vertex is (h,k). So h = -2 and k = 3.

Plug those three values into the vertex form below

y = a(x-h)^2 + k

y = 1(x-(-2))^2 + 3

y = (x+2)^2 + 3

Then expand everything out and simplify

y = x^2+4x+4 + 3

y = x^2+4x+7

We see that b = 4 and c = 7.

8 0
2 years ago
PLEASE HELP ASAP!!!!!!!!!!
Elis [28]

Answer:


Step-by-step explanation:


6 0
3 years ago
Thr diffrence between 4,632 and 20,000
stira [4]
The answer to that is :

15,368
6 0
3 years ago
Read 2 more answers
Other questions:
  • What’s the answer?!?
    6·2 answers
  • What is the logarithmic form of 81=3^4
    9·1 answer
  • Increase £500 by 3.2% how do you work it out
    13·1 answer
  • Read the following statement:
    10·2 answers
  • Simplify (5^-2)^4. Plsss help
    10·1 answer
  • Write the next 3 terms in the sequence.<br><br> 108, -432, 1728, -6912, ...
    5·1 answer
  • What is the slope of the line? Khan academy
    14·1 answer
  • The length of a shadow of a building is 30 m. The distance from the top of the building to the tip of the shadow is 36 m.
    9·1 answer
  • Answer asap thank you?!!!!!<br> 1.
    5·2 answers
  • Construct a quadratic equation whoose root are <br>1 √7-2 and √7+2​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!