Her score in computer to get a proportionally weighted average of 46% will be 134.
The total score for both subjects = 200 + 300 = 500
Since the proportionally weighted average is 46%, then her score will be:
= 46% × 500
= 0.46 × 500
= 230
Since she had 32% for her statistics test, which was out of a total of 300. Her score will be:
= 32% × 300
= 0.32 × 300
= 96
Therefore, her score in computer will be:
= 230 - 96
= 134
Read related link on:
brainly.com/question/24429956
Answer:
<h2><u><em>
**Please rate brainliest and vote 5 and give thanks**</em></u></h2>
Step-by-step explanation:
● A standard deck of cards has:
● 52 Cards in 13 values and 4 suits
● Suits are Spades, Clubs, Diamonds
and Hearts
● Each suit has 13 card values:
2-10, 3 “face cards” Jack, Queen, King (J, Q, K)
and and Ace (A)
Basic Card Probabilities
● If you draw a card at random, what is the
probability you get:
● A Spade? P(Spade)=13/52
● A Face card? P(Face Card)=12/52 (or simply 3/13)
● A Red Ace? P(Red Ace) = 2/52
Step-by-step explanation:
<em>option </em><em>A </em><em>could </em><em>be </em><em>the </em><em>write </em><em>ans.</em><em> </em><em>as </em><em>the </em><em>given </em><em>pair </em><em>is </em><em>Alternate</em><em> </em><em>Interior</em><em> </em><em>Angle.</em>
<em><u>hope </u></em><em><u>this</u></em><em><u> answer</u></em><em><u> helps</u></em><em><u> you</u></em><em><u> dear</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care</u></em><em><u> and</u></em><em><u> </u></em><em><u>may</u></em><em><u> u</u></em><em><u> have</u></em><em><u> a</u></em><em><u> great</u></em><em><u> day</u></em><em><u> ahead</u></em><em><u>!</u></em>
Here’s the link to the answer
Curlylips444.com
You can find the remainder right away by simply plugging in

. The polynomial remainder theorem guarantees that the value of

is the remainder upon dividing

by

, but I digress...
Synthetic division yields
3 | 2 -11 18 -15
. | 6 -15 9
- - - - - - - - - - - - - - - - -
. | 2 -5 3 -6
which translates to

(and note that

, as expected)