Can I see the rest of the problem of number 18 please
P = 2l + 2w
l = 2w
48 = 2(2w) + 2w
48 = 4w + 2w
48 = 6w
8 = w
l = 2w
l = 2(8)
l = 16
48 = 2(16) + 2(8)
48 = 32 + 16
48 = 48
Answer:
length = 16
width = 8
Answer:
its red
Step-by-step explanation:
math. lol
Answer:
Justin survey - mean
Pair of numbers - 14 and 15
Range of salaries - can't read, but the lowest number has to be the answer.
Fourth number is 64
Babysitting mean is $15
data group has 1 mode
mean of 6 and mode of 5 is a)5,12,1,5,7
Find range is 25
Step-by-step explanation:
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.