421/10= 42.1 vans since you can’t bring a 0.1 van you’ll have to bring a whole extra van so 43 vans
answer: one person will be in the partially full van
<span>Equation at the end of step 1 :</span><span> (((x3)•y)-(((3x2•y6)•x)•y))-6y = 0
</span><span>Step 2 :</span><span>Step 3 :</span>Pulling out like terms :
<span> 3.1 </span> Pull out like factors :
<span> -3x3y7 + x3y - 6y</span> = <span> -y • (3x3y6 - x3 + 6)</span>
Trying to factor a multi variable polynomial :
<span> 3.2 </span> Factoring <span> 3x3y6 - x3 + 6</span>
Try to factor this multi-variable trinomial using trial and error<span>
</span>Factorization fails
<span>Equation at the end of step 3 :</span><span> -y • (3x3y6 - x3 + 6) = 0
</span><span>Step 4 :</span>Theory - Roots of a product :
<span> 4.1 </span> A product of several terms equals zero.<span>
</span>When a product of two or more terms equals zero, then at least one of the terms must be zero.<span>
</span>We shall now solve each term = 0 separately<span>
</span>In other words, we are going to solve as many equations as there are terms in the product<span>
</span>Any solution of term = 0 solves product = 0 as well.
Solving a Single Variable Equation :
<span> 4.2 </span> Solve : -y = 0<span>
</span>Multiply both sides of the equation by (-1) : y = 0
Step-by-step explanation:
it is 5/6 ..............
Answer:
95% two-sided confidence interval on the true mean breaking strength is (94.8cm, 99.2cm)
Step-by-step explanation:
Our sample size is 11.
The first step to solve this problem is finding our degrees of freedom, that is, the sample size subtracted by 1. So
.
Then, we need to subtract one by the confidence level
and divide by 2. So:

Now, we need our answers from both steps above to find a value T in the t-distribution table. So, with 10 and 0.025 in the two-sided t-distribution table, we have 
Now, we find the standard deviation of the sample. This is the division of the standard deviation by the square root of the sample size. So

Now, we multiply T and s
cm
For the upper end of the interval, we add the sample mean and M. So the upper end of the interval here is
cm
So
95% two-sided confidence interval on the true mean breaking strength is (94.8cm, 99.2cm).