F(x) = C , hope this helped !
Answer:
<u>y'= 5x^4 + 5^x In(5)</u>
Step-by-step explanation:
<u>Differentiate</u><u> </u><u>with </u><u>Respect</u><u> </u><u>to</u><u> </u><u>x</u>
<u>f(</u><u>x)</u><u>'</u><u>=</u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>In(</u><u>5</u><u>^</u><u>x</u><u>)</u>
<u>f(</u><u>x)</u><u>'</u><u>=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>x </u><u>In(</u><u>5</u><u>)</u>
<u>with </u><u>respect</u><u> </u><u>to </u><u>x,</u><u> </u><u>we </u><u>have</u>
<u>y'=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>y </u><u>In(</u><u>5</u><u>)</u>
<u>y'=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>5</u><u>^</u><u>x</u><u> </u><u>In(</u><u>5</u><u>)</u>
1 mm = 0.1 cm
(a) 5 mm
5 × 0.1 = 0.5
Fraction :- 5/0.5
5 ÷ 0.5 =10
Decimal:- 10
(b) 8 mm
8 × 0.1 = 0.8
Fraction:- 8/0.8
8 ÷ 0.8 = 10
Decimal:- 10
About 32.34% of the values do not lie between the z-scores of -1.3 and 0.75.
First, we need to find the region between the z-scores.
If you look at a normal distribution table, you will get the following values:
0.75 = 77.34%
-1.3 = 9.68%
Subtraction those gives us the area between the z-scores.
77.34 - 9.68 = 67.66%
Now, just subtract that value from 100% to get the amount outside of the area.
100 - 67.66 = 32.34%