Answer:
285,753 cm³/min
Step-by-step explanation:
The rate of change of volume is the product of the water's surface area and its rate of change of depth.
At a depth of 2 m, the water has filled 1/3 of the 6 m depth of the tank. So, the radius at the water's surface will be 1/3 of the tank's radius of 2 m. The water's surface area is ...
A = πr² = π(2/3 m)² = 4π/9 m²
The rate of change of depth is 0.2 m/min, so the volume of water is increasing at the rate ...
dV/dt = (0.20 m/min)(4π/9 m²) = 8π/90 m³/min ≈ 279253 cm³/min
This change in volume is the difference between the rate at which water is being pumped in and the rate at which it is leaking out:
2.8×10⁵ cm³/min = (input rate) - 6500 cm³/min
Adding 6500 cm³/min to the equation, we get ...
input rate ≈ 285,753 cm³/min
Answer:
Yes, Tom must be admitted to this university.
Step-by-step explanation:
We are given that the scores on national test are normally distributed with a mean of 500 and a standard deviation of 100.
Also, we are provided with the condition that Tom wants to be admitted to this university and he knows that he must score better than at least 70% of the students who took the test.
Let, X = score in national test, so X ~ N(
)
The standard normal z distribution is given by;
Z =
~ N(0,1)
Now, z score of probability that tom scores 585 is;
Z =
= 0.85
Now, proportion of students scoring below 85% marks is given by;
P(Z < 0.85) = 0.80234
This shows that Tom scored 80.23% of the students who took test while he just have to score more than 70%.
So, it means that Tom must be admitted to this university.
Answer:
881 (-6x)
Step-by-step explanation:
Answer: i do not no
Step-by-step explanation: