Answer:
a = 4.6
b = 4.2
Step-by-step explanation:
to find a, use cos:
⇒ cos = 
⇒ cos 30 = 
cos of 30 is 0.154
⇒ 0.154 =
multiply 13 on both sides:
⇒ 0.154 x 13 =
x 13
⇒ 4.62 = a
round to the nearest tenth:
⇒ 4.62 = 4.6
⇒ a = 4.6
to find b, use tan:
⇒ tan = 
⇒ tan 60 = 
tan of 60 is 0.320
⇒ 0.320 = 
multiply 13 on both sides:
⇒ 0.320 x 13 =
x 13
⇒ 4.16 = b
round to the nearest tenth:
⇒ 4.16 = 4.2
⇒ b = 4.2
This is not an actual equation,
Well u have to make the denominator the same so u multiply 3/8 by 3 and get 9/24, then multiple 2/6 by three and get 8/24. Add them, 9/24+8/24 and u get 17/24
Given that <span>Line m is parallel to line n.
We prove that 1 is supplementary to 3 as follows:
![\begin{tabular} {|c|c|} Statement&Reason\\[1ex] Line m is parallel to line n&Given\\ \angle1\cong\angle2&Corresponding angles\\ m\angle1=m\angle2&Deifinition of Congruent angles\\ \angle2\ and\ \angle3\ form\ a\ linear\ pair&Adjacent angles on a straight line\\ \angle2\ is\ supplementary\ to\ \angle3&Deifinition of linear pair\\ m\angle2+m\angle3=180^o&Deifinition of supplementary \angle s\\ m\angle1+m\angle3=180^o&Substitution Property \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AStatement%26Reason%5C%5C%5B1ex%5D%0ALine%20m%20is%20parallel%20to%20line%20n%26Given%5C%5C%0A%5Cangle1%5Ccong%5Cangle2%26Corresponding%20angles%5C%5C%0Am%5Cangle1%3Dm%5Cangle2%26Deifinition%20of%20Congruent%20angles%5C%5C%0A%5Cangle2%5C%20and%5C%20%5Cangle3%5C%20form%5C%20a%5C%20linear%5C%20pair%26Adjacent%20angles%20on%20a%20straight%20line%5C%5C%0A%5Cangle2%5C%20is%5C%20supplementary%5C%20to%5C%20%5Cangle3%26Deifinition%20of%20linear%20pair%5C%5C%0Am%5Cangle2%2Bm%5Cangle3%3D180%5Eo%26Deifinition%20of%20supplementary%20%5Cangle%20s%5C%5C%0Am%5Cangle1%2Bm%5Cangle3%3D180%5Eo%26Substitution%20Property%0A%5Cend%7Btabular%7D)

</span>
Answer:B
Step-by-step explanation: