Answer:
Step-by-step explanation:
36x^3 - 81x
9x(4x^2 - 9)
9x(2x - 3)(2x + 3)
She is right
Let m and s be the number of math and sociology books sold respectively.
m=s+88 we are also told that:
m+s=426, using m found above in this equation gives you:
s+88+s=426 combine like terms on left side
2s+88=426 subtract 88 from both sides
2s=338 divide both sides by 2
s=169, since m=s+88
m=169+88=257
So 257 math and 169 sociology textbooks were sold.
Hey there!
We may ask. What exactly is a term anyways.
Well, a term is a single number, a variable, or a number and a variable that would have to be multiply together. This is what a term would be.
Therefore, as we look above, we see the following equation.
9a+4b-18
18 is a term
4b is a term
9a is a term
This whole thing, would be called an expression, as this is expression something. Perhaps the amount of students who ate ice-cream at a football game, or something similar.
I hope you found this helpful! :)
9x - 2 = 67
67 + 2 = 69
69 × 9 = 621
621 = x
Answer:
See Explanation
Step-by-step explanation:
![{a} = {6}^{x}, \: \: b = {6}^{y} ...(given) \\ {a}^{y}. {b}^{x} = 36..(1) \\ pluggig \: the \: values \: of \: a \: and \: b \: in \: (1) \\ ({6}^{x}) ^{y} . ({6}^{y}) ^{x} = {6}^{2} \\ {6}^{xy}.{6}^{xy} = {6}^{2} \\ {6}^{xy + xy} = {6}^{2} \\ {6}^{2xy} = {6}^{2} \\ bases \: are \: equal \: so \: exponentes \: will \: also \: be\\ \: equal \\ \therefore \: 2xy = 2 \\ xy = \frac{2}{2} \\ \huge \red { \boxed{ xy = 1}} \\ hence \: proved \\](https://tex.z-dn.net/?f=%20%7Ba%7D%20%3D%20%20%7B6%7D%5E%7Bx%7D%2C%20%20%5C%3A%20%20%5C%3A%20b%20%3D%20%7B6%7D%5E%7By%7D%20%20...%28given%29%20%5C%5C%20%20%7Ba%7D%5E%7By%7D.%20%7Bb%7D%5E%7Bx%7D%20%20%3D%2036..%281%29%20%5C%5C%20pluggig%20%5C%3A%20the%20%5C%3A%20values%20%5C%3A%20of%20%5C%3A%20a%20%5C%3A%20and%20%5C%3A%20b%20%5C%3A%20in%20%5C%3A%20%281%29%20%5C%5C%20%20%28%7B6%7D%5E%7Bx%7D%29%20%5E%7By%7D%20.%20%28%7B6%7D%5E%7By%7D%29%20%5E%7Bx%7D%20%3D%20%20%7B6%7D%5E%7B2%7D%20%20%5C%5C%20%7B6%7D%5E%7Bxy%7D.%7B6%7D%5E%7Bxy%7D%20%3D%20%20%7B6%7D%5E%7B2%7D%20%20%5C%5C%20%20%7B6%7D%5E%7Bxy%20%2B%20xy%7D%20%20%3D%20%20%7B6%7D%5E%7B2%7D%20%20%5C%5C%20%20%7B6%7D%5E%7B2xy%7D%20%20%3D%20%20%7B6%7D%5E%7B2%7D%20%20%5C%5C%20bases%20%5C%3A%20are%20%5C%3A%20equal%20%5C%3A%20so%20%5C%3A%20exponentes%20%5C%3A%20will%20%5C%3A%20also%20%5C%3A%20be%5C%5C%20%5C%3A%20equal%20%5C%5C%20%20%5Ctherefore%20%5C%3A%202xy%20%3D%202%20%5C%5C%20xy%20%3D%20%20%5Cfrac%7B2%7D%7B2%7D%20%20%5C%5C%20%5Chuge%20%5Cred%20%7B%20%5Cboxed%7B%20xy%20%3D%201%7D%7D%20%5C%5C%20hence%20%5C%3A%20proved%20%5C%5C%20)