The rate of disappearance of O2(g) under the same conditions is 2.5 × 10⁻⁵ m s⁻¹.
<h3>What is the rate law of a chemical equation? </h3>
The rate law of a chemical reaction equation is usually dependent on the concentration of the reactant species in the equation.
The chemical reaction given is;

The rate law for this reaction can be expressed as:
![\mathbf{= -\dfrac{1}{2}\dfrac{d[NO]}{dt} = -\dfrac{1}{1}\dfrac{d[O_2]}{dt}= +\dfrac{1}{2}\dfrac{d[NO_2]}{dt}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BNO%5D%7D%7Bdt%7D%20%3D%20-%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D%20%2B%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D%7D)
Recall that:
- The rate of disappearance of NO(g) = 5.0× 10⁻⁵ m s⁻¹.
- Since both NO and O2 are the reacting species;
Then:
- The rate of disappearance of NO(g) is equal to the rate of disappearance of O2(g)
![\mathbf{= -\dfrac{1}{2}\dfrac{d[NO]}{dt} = -\dfrac{1}{1}\dfrac{d[O_2]}{dt}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BNO%5D%7D%7Bdt%7D%20%3D%20-%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%7D)

Thus;
The rate of disappearance of O2 = 2.5 × 10⁻⁵ m s⁻¹.
Therefore, we can conclude that two molecules of NO are consumed per one molecule of O2.
Learn more about the rate law here:
brainly.com/question/14945022
An example of Big ideas math algebra 2 study question is Solve for the Given expression is 7.3² + 11.
<h3>What is big math algebra?</h3>
This is known to be a type of math practice or text book that has been design to help student have basic knowledge of algebra.
Using the order of operations, we have to first simplify the exponential term first and later multiply it.
7. 3² + 11 =
=7⋅9+11 ;
=63+11
= 75
Therefore, the answer will be 74.
Learn more about algebra from
brainly.com/question/6143254
Answer:
Cite specific legal rulings in order to generalize.
Explanation:
I got 100%
Answer:
<h3>New Jersey has passed a law prohibiting offshore oil and gas exploration, development and production in state waters—the nation's toughest response yet to the Trump administration's plans to vastly expand offshore drilling in nearly all U.S. coastal waters.</h3>
Explanation:
<h2>#CARRYONLEARNING:)</h2>