1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tju [1.3M]
4 years ago
7

The last answer choices for 4 are A 3.0 B 3.9 C 4.1 D 5.3

Mathematics
1 answer:
BaLLatris [955]4 years ago
5 0
I think the answer would be 4.1 because the balloon is 4 kilometers, and 1 kilometer from the station. Put them together and you get 4.1 This answer may OR may not be correct, but I am sure this is the answer.
You might be interested in
Y times 3=9 y =what
Nezavi [6.7K]

Answer: 3 Y=3

Step-by-step explanation:

Y×3=9

3×3=9

You can also check this by rearranging it and dividing 9 by 3.

9÷3=3.

This works for any similar problem.

Example:

Y×4=12 Y=? Y=3

Rearrange it and divide 12 by 4.

12÷4=Y

12÷4=3

So Y×4=12 because 3×4=12

Hope this helps!

6 0
3 years ago
En el estante de un negocio hay 2 tipos de tarros de la misma mermelada y marca. El tarro más alto tiene el doble de altura que
Ipatiy [6.2K]

Answer:

tarro corto

Step-by-step explanation:

Aquí tenemos que comprar el frasco que tiene el menor costo por volumen.

h_1 = Altura del frasco corto

h_2 = La altura del frasco alto es el doble que el del frasco corto. = 2h_1

d_1 = Diámetro del frasco corto

d_2 = El diámetro del frasco alto es la mitad del frasco corto = \dfrac{1}{2}d_1

El volumen de un cilindro es \pi \dfrac{d^2}{4}h

La razón de los volúmenes de los frascos es

\dfrac{V_1}{V_2}=\dfrac{\pi\dfrac{d_1^2}{4}h_1}{\pi\dfrac{d_2^2}{4}h_2}\\\Rightarrow \dfrac{V_1}{V_2}=\dfrac{d_1^2h_1}{d_2^2h_2}\\\Rightarrow \dfrac{V_1}{V_2}=\dfrac{d_1^2h_1}{(\dfrac{1}{2}d_1)^22h_1}\\\Rightarrow \dfrac{V_1}{V_2}=\dfrac{d_1^2h_1}{\dfrac{1}{4}d_1^22h_1}\\\Rightarrow \dfrac{V_1}{V_2}=\dfrac{1}{\dfrac{1}{2}}\\\Rightarrow \dfrac{V_1}{V_2}=2\\\Rightarrow V_1=2V_2

El costo del frasco corto por unidad de volumen es

\dfrac{8000}{V_1}=\dfrac{8000}{2V_2}=\dfrac{4000}{V_2}

El costo del frasco alto por unidad de volumen es

\dfrac{4500}{V_2}=\dfrac{4500}{V_2}

\dfrac{4000}{V_2}

Entonces, el costo del frasco corto por unidad de volumen es menor que el costo por unidad de volumen del frasco alto.

Por lo tanto, deberíamos tomar el frasco corto.

5 0
3 years ago
What is the area of this triangle?<br><br> Enter your answer in the box.
Norma-Jean [14]

Answer:

i think 8cm is triangle area

Step-by-step explanation:

because i saw that 8cm on the side so I told 8cm the triangle.

3 0
2 years ago
QUICK QUICK! 1 MINUTE ONLY PLEASE!
Llana [10]

36 questions-----3 minutes

x questiones-----1 minutes

x=(1*36)/3

x=36/3

x=12 questions

B.

5 0
3 years ago
Read 2 more answers
Step 1: Choose ONE of the following triangles and complete the table below:
Archy [21]

The question is incomplete below you will find the missing part.

Step 1 : Choose ONE of the following triangles complete the table below:

1. Obtuse Scalene Triangle Translation to prove SSS Congruence

or

2. Isosceles Right Triangle Reflection to prove ASA Congruence

or

3. Equilateral Equiangular Triangle Rotation to prove SAS Congruence

Original Coordinate Point

Transformation Rule

Image Coordinate Points

A (1, 4)      (x,y) -> (x+ ,y -)      A’ ( , )

B ( 7,4)     (x,y) -> (x+ ,y - )     B’ ( , )

C (8,9)      (x,y) -> (x+ ,y -)     C’ ( , )

The appropriate table is also shown below.

The triangles ABC and A'B'C' are congruent by SSS through Obtuse Scalene Triangle Translation  because the corresponding sides are congruent

Two triangles are congruent if their size and shape are the same.

Now we have to transform the triangle,

The coordinates of the triangle ΔABC are given as:

A = (1, 4)

B = (7,4)

C = (8,9)

so the lengths of the sides of the triangle are given by

AB= √(7-1)²+(4-4)²= √6²= 6

BC= √(8-7)²+(9-4)²= √1²+5²= √1+25= √26

CA= √(8-1)²+(9-4)²= √7²+5²= √49+25= √74

In order to prove the SSS congruence, we have to transform the triangles under the following translation rule:

(x,y) -> (x -3, y +6)

in the above translation,

The triangle will be translated 3 units left

And then translated 6 units up.

So, we have the new coordination of the points of the translated triangle ΔA'B'C'

A' = (1-3, 4+6)

A' = (-2, 10)

B' = (7-3, 4+6)

B' = (4, 10)

C' = (8-3, 9+6)

C' = (5, 15)

Now

so the lengths of the sides of the triangle are given by

A'B'= √(4-(-2))²+(10-10)²= √6²= 6

B'C'= √(5-4)²+(15-10)²= √1²+5²= √1+25= √26

C'A'= √(-2-5)²+(10-15)²= √(-7)²+(-5)²= √49+25= √74

By comparing two triangles ΔABC and ΔA'B'C'

AB ≅ A'B'

BC ≅ B'C'

CA ≅ C'A'

Hence ΔABC ≅ A'B'C' (By S-S-S rule)

By the above transformation, the triangles ABC and A'B'C' are congruent by SSS because the corresponding sides are congruent as all the points are gone through the same transformation.

Learn more about the transformation

here: brainly.com/question/4289712

#SPJ10

6 0
2 years ago
Other questions:
  • In which segment is the function constant
    10·1 answer
  • Find the value of x.<br><br> 70<br> 35<br> 40<br> 80
    7·1 answer
  • Please help.. Picture is added
    15·1 answer
  • if $95 is put in an account that gets 6% and I add $18 per year how much will I have at the end of 11 years?
    6·1 answer
  • Which correlation coefficient indicates the stronger linear relationship between random variables for a fixed sample size?
    5·1 answer
  • What is the median for the given set of data?
    7·1 answer
  • En la finca de los padres de un amigo han sacado un total de 18.367,42 kg de aceitunas. Ellos tienen 648 olivos. ¿Cuántos kg de
    5·1 answer
  • Candice runs a day care center. Of the 17 children at the day care center, 6 of them are five-
    9·1 answer
  • In a school election, 2/5 of the 30 candidates are girls and the rest are boys. How many candidates are boys?
    7·2 answers
  • Lionel uses two functions to model the costs of having a problem diagnosed and repaired by two appliance repair companies. He mo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!