Not sure sorry I will look at it again though
The length of side x in simplest radical form with a rational denominator is 8√3
<h3>How to find the length of side x in simplest radical form with a rational denominator?</h3>
The given parameters are:
Triangle type = Equilateral triangle
Height (h) = 12
Missing side length = x
The missing side length, x is calculated using the following sine ratio
sin(60) = Height/Missing side length
This gives
sin(60) = 12/x
Make x the subject of the formula
So, we have
x = 12/sin(60)
Evaluate the quotient
So, we have
x = 12/(√3/2)
This gives
x = 24/√3
Rationalize
x = 24/√3 * √3/√3
Evaluate
x = 8√3
Hence, the length of side x in simplest radical form with a rational denominator is 8√3
Read more about triangles at
brainly.com/question/2437195
#SPJ1
Answer:
The 99% confidence interval for the population mean reduction in anxiety was (1.2, 8.6).
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 27 - 1 = 26
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 26 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.7787.
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 4.9 - 3.7 = 1.2.
The upper end of the interval is the sample mean added to M. So it is 4.9 + 3.7 = 8.6.
The 99% confidence interval for the population mean reduction in anxiety was (1.2, 8.6).
Answer:
8 mate.
Step-by-step explanation:
heavy metal is pretty brilliant.
The answer is D. -2x+5.
If we simplify the left side of the equation first given, we come to the expression -2x-10.
If we solve for D., we get the same results. Thus, because an equation with all the same variable terms and constants have infinite solutions, the answer is D.
Hope this helps!