1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex787 [66]
4 years ago
14

You want to buy a DVD that costs $19.95. Estimate the total cost if the sales tax rate is 8%.

Mathematics
1 answer:
meriva4 years ago
4 0

Answer:

$1.60

Step-by-step explanation:

first you take 19.95 times .08 and you get 1.596 you round up to get 1.6

You might be interested in
A ball bounces back 0.6 of its height on every bounce. If the ball is dropped from 200 feet, how high does it bounce on the fift
ryzh [129]
200*((0.6)^5)=200*<span>0.07776=15.552 feet</span>
6 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
The formula is m=4a+2c where c is the number of children, m=the number of meatballs, a=number of adults.
Trava [24]

Answer:

110

Step-by-step explanation:

m = 4a + 2c

a = 25, c = 5

m = 4(25) + 2(5)

m = 100 + 10

m = 110 meatballs

6 0
3 years ago
Each of 7 students reported the number of movies they saw in the past year. This is what they reported.
Lady_Fox [76]

Answer:

A is 6

B is 9.4

Step-by-step explanation:

First you put the numbers in order. then you take the middle number of the data set. This is how you find the median. For the mean you add all of the number in the data set then divide by how many numbers are there

6 0
2 years ago
a photograph has a perimeter of 24 in the difference between the photographs Lane and the width is 2 inches. find the length and
DaniilM [7]

L-w=5

L=w+5

P=2*(L+w)=24

L+w=24/2

L+w=12

w+5+w=12

2w+5=12

2w=12-5

2w=7

w=7/2

w=3.5

L=2+3.5

L=5.5

8 0
4 years ago
Other questions:
  • What is the ratio of -2.75 as two integers
    14·1 answer
  • Which of the following is NOT a requirement of the Combinations​ Rule, Subscript n Baseline Upper C Subscript requalsStartFracti
    14·2 answers
  • 5/8m - 3/8 = 1/2m + 7/8 <br><br>solve
    11·2 answers
  • For a healthy diet, it is recommended that 55% of the daily intake of Calories come from carbohydrates. Find the daily intake of
    9·1 answer
  • The distributive property 3(8-x)
    15·1 answer
  • Help with simple graph question, please explain to me how you got the answer
    12·1 answer
  • The Tennessean, an online newspaper located in Nashville, Tennessee, conducts a daily poll to obtain reader opinions on a variet
    8·1 answer
  • Find the area of the sector.
    11·1 answer
  • Take a look at the picture and tell me what you think.<br><br> Thank you ;)
    7·1 answer
  • Match each sine or cosine value to its equivalent measure.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!