Answer:
Option A - Neither. Lines intersect but are not perpendicular. One Solution.
Option B - Lines are equivalent. Infinitely many solutions
Option C - Lines are perpendicular. Only one solution
Option D - Lines are parallel. No solution
Step-by-step explanation:
The slope equation is known as;
y = mx + c
Where m is slope and c is intercept.
Now, two lines are parallel if their slopes are equal.
Looking at the options;
Option D with y = 12x + 6 and y = 12x - 7 have the same slope of 12.
Thus,the lines are parrallel, no solution.
Two lines are perpendicular if the product of their slopes is -1. Option C is the one that falls into this category because -2/5 × 5/2 = - 1. Thus, lines here are perpendicular and have one solution.
Two lines are said to intersect but not perpendicular if they have different slopes but their products are not -1.
Option A falls into this category because - 9 ≠ 3/2 and their product is not -1.
Two lines are said to be equivalent with infinitely many solutions when their slopes and y-intercept are equal.
Option B falls into this category.
They are going up by 2.15
Answer:
The dots above the number 3 represent that 5 students have 3 email accounts
Step-by-step explanation:
each dot represents 1 out of the 25 students
The 3 on the horizontal line is Number of Email Accounts
Visual representation:
Answer:
a. 1 1/8 b. 8/9
Step-by-step explanation:
You can set this up as a proportion to solve. For part a. we know that 2/3 of the road is 3/4 mile long. 2/3 + 1/3 = the whole road, so we need how many miles of the road is 1/3 its length. Set up the proportion like this:

Cross multiplying gives you:

The 3's on the right cancel out nicely, leaving you with

To solve for x, multiply both sides by 3/2:
gives you

That means that the road is still missing 3/8 of a mile til it's finished. The length of the road is found by adding the 3/4 to the 3/8:

So the road is a total of 1 1/8 miles long.
For b. we need to find out how much of 1 1/8 is 1 mile:
1 mile = x * 9/8 and
x = 8/9. When 1 mile of the road is completed, that is 8/9 of the total length of the road completed.