Answer:
B the range, the x- and y-intercept
Step-by-step explanation:
the domain stays the same : all values of x are possible out of the interval (-infinity, +infinity).
but the range changes, as for the original function y could only have positive values - even for negative x.
the new function has a first term (with b) that can get very small for negative x, and then a subtraction of 2 makes the result negative.
the y-intercept (x=0) of the original function is simply y=1, as b⁰=1.
the y-intercept of the new function is definitely different, because the first term 3×(b¹) is larger than 3, because b is larger than 1. and a subtraction of 2 leads to a result larger than 1, which is different to 1.
the original function has no x-intercept (y=0), as this would happen only for x = -infinity. and that is not a valid value.
the new function has an x-intercept, because the y-values (range) go from negative to positive numbers. any continuous function like this must therefore have an x-intercept (again, y = the function result = 0)




let's recall that a cube is just a rectangular prism with all equal sides, check picture below.
![\bf \textit{volume of a cube}\\\\ V=s^3~~ \begin{cases} s=&length~of\\ &a~side\\ \cline{1-2} V=&27000 \end{cases}\implies 27000=s^3\implies \sqrt[3]{27000}=s\implies 30=s \\\\[-0.35em] ~\dotfill\\\\ \textit{surface area of a cube}\\\\ SA=6s~~\begin{cases} s=&length~of\\ &a~side\\ \cline{1-2} s=&30 \end{cases}\implies SA=6(30)\implies SA=180](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cube%7D%5C%5C%5C%5C%20V%3Ds%5E3~~%20%5Cbegin%7Bcases%7D%20s%3D%26length~of%5C%5C%20%26a~side%5C%5C%20%5Ccline%7B1-2%7D%20V%3D%2627000%20%5Cend%7Bcases%7D%5Cimplies%2027000%3Ds%5E3%5Cimplies%20%5Csqrt%5B3%5D%7B27000%7D%3Ds%5Cimplies%2030%3Ds%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ctextit%7Bsurface%20area%20of%20a%20cube%7D%5C%5C%5C%5C%20SA%3D6s~~%5Cbegin%7Bcases%7D%20s%3D%26length~of%5C%5C%20%26a~side%5C%5C%20%5Ccline%7B1-2%7D%20s%3D%2630%20%5Cend%7Bcases%7D%5Cimplies%20SA%3D6%2830%29%5Cimplies%20SA%3D180)
Answer:
D
DDDDDDDDDDDDDDDDDDDDDDDDDDDD
Step-by-step explanation:
Answer:
See answer below
Step-by-step explanation:
This is a separable equation, so we solve it like this:

Then
for any constant k (this is the general solution). This solution is defined in (-∞,∞) (there are no singularities) and when x tends to infinity, no terms of the solution vanish, hence there are no transient terms.