The standard form of the equation of a circle is (x-h)^2 + (y-k)^2 = r^2, where (h,k) is the center of the circle, (x,y) is a point of the circle, and r is the length of the radius of the circle. When the equation of a circle is written, h,k, and r are numbers, while x and y are still variables. (x-2)^2 + (y-k)^2 = 16 is an example of a circle. The problem gives us two of the three things that a circle has, a point (5,9) and the center (-2,3). We need to find the radius in order to write the equation. We substitute -2 for h, 3 for k, 5 for x, and 9 for y to get (5 - (-2))^2 + (9 - 3)^2 = r^2 We simplify: 49 + 36 = r^2, r^2 = 85. We only need to know r^2 because the equation of a circle has r^2. We now have all the information to write the equation of a circle. (x + 2)^2 + (y - 3)^2 = 85.
Answer:
-3/2
Step-by-step explanation:
Count up three times and to the left twice. Let me know if you need help with other questions!
Answer:
Twoja odpowiedź brzmi 23401.
Spójrz na zdjęcie, aby uzyskać dalsze wyjaśnienia.
- A DNA strand can act as a template for synthesis of a new nucleic acid strand in which each base forms a hydrogen-bonded pair with one on the template strand (G with C, A with T, or A with U for RNA molecules). The new sequence is thus complementary to the template strand. The copying of DNA molecules to produce more DNA is known as DNA Replication.
-DNA replication takes place at a Y-shaped structure called a replication fork. A self-correcting DNA polymerase enzyme catalyzes nucleotide polymerization in a 5ʹ-to-3ʹ direction, copying a DNA template strand with remarkable fidelity. Since the two strands of a DNA double helix are antiparallel, this 5ʹ-to-3ʹ DNA synthesis can take place continuously on only one of the strands at a replication fork (the leading strand).
-On the lagging strand, short DNA fragments must be made by a “backstitching” process. Because the self-correcting DNA polymerase cannot start a new chain, these lagging-strand DNA fragments are primed by short RNA primer molecules that are subsequently erased and replaced with DNA.
-DNA replication requires the cooperation of many proteins. These include:
*DNA polymerase and DNA primase to catalyze nucleoside triphosphate polymerization;
*DNA helicases and single-strand DNA-binding (SSB) proteins to help in opening up the DNA helix so that it can be copied;
*DNA ligase and an enzyme that degrades *RNA primers to seal together the discontinuously synthesized laggingstrand DNA fragments;
*DNA topoisomerases to help to relieve helical winding and DNA tangling problems. *Many of these proteins associate with each
other at a replication fork to form a highly efficient “replication machine,” through which the activities and spatial movements of the individual components are coordinated.
Major steps involved in DNA replication are as follows:
*Each strand in a parental duplex DNA acts as a template for synthesis of a daughter strand and remains basepaired to the new strand, forming a daughter duplex (semiconservative mechanism).
*New strands are formed in the 5′ to 3′ direction.
*Replication begins at a sequence called an origin.
*Each eukaryotic chromosomal DNA molecule contains multiple replication origins.
*DNA polymerases, unlike RNA polymerases, cannot unwind the strands of duplex DNA and cannot initiate synthesis of new strands complementary to the template strands.
*Helicases use energy from ATP hydrolysis to separate the parental (template) DNA strands.
*Primase synthesizes a short RNA primer, which remains base-paired to the template DNA.
*This initially is extended at the 3′ end by DNA polymerase α (Pol α), resulting in a short (5′ )RNA- (3′)DNA daughter strand.
*Most of the DNA in eukaryotic cells is synthesized by Pol ẟ, which takes over from Pol α and continues elongation of the daughter strand in the 5′ to 3’direction.
*Pol ẟ remains stably associated with the template by binding to Rfc protein, which in turn binds to PCNA, a trimeric protein that
encircles the daughter duplex DNA.
*DNA replication generally occurs by a bidirectional mechanism in which two replication forks form at an origin and move in opposite directions, with both template strands being copied at each fork.
*Synthesis of eukaryotic DNA in vivo is regulated by controlling the activity of the MCM helicases that initiate DNA replication at multiple origins spaced along chromosomal DNA.
*At a replication fork, one daughter strand (the leading strand) is elongated continuously.
*The other daughter strand (the lagging strand) is formed as a series of discontinuous Okazaki fragments from primers synthesized every few hundred nucleotides.
*The ribonucleotides at the 5′ end of each Okazaki fragment are removed and replaced by elongation of the 3′ end of the next Okazaki fragment.
*Finally, adjacent Okazaki fragments are joined by DNA ligase.
Answer is A and C
Imagine your square has an area of 64,
That means it’s sides are 8 x 8
So only rectangles that are 8inches x 8 inches or less will fit. A and C have these dimensions, they will fit. The other two will not. See my attachment, the green rectangle must fit inside the 8 x 8 square.