Answer:
Step-by-step explanation:
2)f(x) = 2x² +4x - 3
a = 2 ; b = 4 ; c = -3
1) Put x = -1 in the equation
f(x) = 2*(-1)² + 4*(-1) -3 = 2 - 4 -3 = -5
Vertex = (-1,-5)
2) Upward
3) Minimum
4) axis of symmetry = -b/2a = -4/2*2=-4/4= -1
x = -1
5) domain: all real numbers (-∞ ,∞)
Range : y ≥ -5 ; [-5 , ∞)
3) f(x) = 3x² - 6x + 4
Vertex : (1,1)
Opening : upward
Minimum
Axis of symmetry: x = 1
Domain: all real numbers
Range: y ≥ 1 ; [1, ∞)
4)f(x) = -x² - 2x - 3
a) Vertex: f(x) = -(-1)² - 2*(-1) - 3 = -1 + 2 - 3 = -2
Vertex( -1,-2)
b) downward
c) Maximum
d) Axis of symmetry: x = 2/-2 = -1
x = -1
e) Domain: all real numbers
Range: y ≤ -2 ; (-∞ , -2]
5)f(x) = 2(x -2)²
a) Vertex: (2, 0)
b) Opening: upward
c) Minimum
d) x = 2
e)Domain: all real numbers
Range: y ≥ 0 ; [0,∞)
Answer:
For positive values of x, g(x) > h(x).
For negative values of x, g(x) > h(x).
Step-by-step explanation:
For any value of x g(x) is always greater than h(x) and for any value of x, h(x) will always be greater than g(x) are not true.
The given function is:
g(x) = x^2 and h(x) = –x^2
x=0
g(0)=(0)^2 = 0
h(0)= -(0)^2 = 0
Now check the condition for x = -1
put x =-1 in the given functions.
g(x)=x^2
g(-1) = (-1)^2 = 1
h(x)= -x^2
h(-1) = -(-1)^2 = -1
g(x)>h(x)
Now take a positive value of x= 3
Put the value in the given functions:
g(3) = (3)^2 = 9
h(3) = -(3)^2 = -9
g(x)>h(x)
For positive values of x, g(x) > h(x).
For negative values of x, g(x) > h(x)....
4x^2-6x^4+2x^5-x+1 is the correct order
L=w+9
p=2w+2l
p=2w+2*(w+9)
p=2w+2w+2*9
p=4w+18
4w+18=38
4w=38-18
4w=20
w=20:4
w=5 in
l=5+9=14 in