Answer:
the answer is the last one
Step-by-step explanation:
so the answer is d
The correct value of this equation is <u>m = </u><u>24</u>
<h3>Resolution method</h3>
This equation contains a fractional term. We note that the denominator of this equation is the <u>term 4</u>. Therefore, we will multiply the sides by <u>4</u>:
13 = m/4 + 7
13 . 4 = 4(m/4) + 7 . 4
52 = m + 28
Now, let's isolate the variable "as negative" and after the equality - we'll be subtracting the terms:
52 = m + 28
-m = 28 - 58
-m = -24
<u>m = 24</u>
Therefore, the correct value of this equation will be <u>m = 24</u>
Answer: 0.0793
Step-by-step explanation:
Let the IQ of the educated adults be X then;
Assume X follows a normal distribution with mean 118 and standard deviation of 20.
This is a sampling question with sample size, n =200
To find the probability that the sample mean IQ is greater than 120:
P(X > 120) = 1 - P(X < 120)
Standardize the mean IQ using the sampling formula : Z = (X - μ) / σ/sqrt n
Where; X = sample mean IQ; μ =population mean IQ; σ = population standard deviation and n = sample size
Therefore, P(X>120) = 1 - P(Z < (120 - 118)/20/sqrt 200)
= 1 - P(Z< 1.41)
The P(Z<1.41) can then be obtained from the Z tables and the value is 0.9207
Thus; P(X< 120) = 1 - 0.9207
= 0.0793

So, You cross multiply and get 56x=244(100). Simplify and you get 56x=24400. Divide each side by 56 and you get 435.71. 56% of about 435.71 is 244.
Answer: The Median: 78, The First Quartile: 63, and The Third Quartile: 99
Step-by-step explanation: Ok, so let's put the data set from least to greatest....
(63, 63, 76,) (77, 79,) (84, 99, 99)
First Quartile Third Quartile
First, let's find the median, since you made a little mistake...
77 + 79 = 156
156 ÷ 2 = 78
The median is 78!
Now, let's determine the first quartile and the third quartile.
For the the first quartile/third quartile it'll be the middle number, if it's even we'll do the same extra step just like we'll do for the median. In this case it's not even therefore...
First Quartile: 63
Third Quartile: 99
I hope this helps!