You're given that φ is an angle that terminates in the third quadrant (III). This means that both cos(φ) and sin(φ), and thus sec(φ) and csc(φ), are negative.
Recall the Pythagorean identity,
cos²(φ) + sin²(φ) = 1
Multiply the equation uniformly by 1/cos²(φ),
cos²(φ)/cos²(φ) + sin²(φ)/cos²(φ) = 1/cos²(φ)
1 + tan²(φ) = sec²(φ)
Solve for sec(φ) :
sec(φ) = - √(1 + tan²(φ))
Given that cot(φ) = 1/4, we have tan(φ) = 1/cot(φ) = 1/(1/4) = 4. Then
sec(φ) = - √(1 + 4²) = -√17
Answer:
There is exactly one output for each input.
The graph of a linear function is a straight line.
A linear function has a constant rate of change.
Step-by-step explanation:
Answer:
c 1,320
Step-by-step explanation:
12 x 11 x 10 = 1,320
only one person can finish in each place
Answer:
A,
Step-by-step explanation:
Answer: E - S = (-16 and 6)
Step-by-step explanation:1/3 of the 30 decimals in T have an even tenths digit, it follows that 1/3*(30)=10 decimals in T have an even tenths digit.
Hence: Te =list of 10 decimals
Se = sum of all 10 decimals in Te
Ee =estimated sum of all 10 decimals in Te after rounding up.
Remaining 20 decimals in T all have an odd tenths digits.
To =list of this 20 decimals
So = sum of all 20 decimals in To
Eo = estimated sum of 20 decimals in To
Hence,
E = Ee + Eo and S =Se +So, hence:
E-S, =(Ee+Eo) - (Se+So) =(Ee-Se) +(Eo-So)
Ee-Se >10 (0.1)=1
S=10(1.8)+20(1.9) =18+38=56
E=10(2)+20(1)=40
E-S =40-56=-16.
AlsoS=10(1.2)+20(1.1)=34
E=10(2)+20(1)=40
E-S=40-34=6