Answer:
The value of 7 in 678,901 is 10 times greater than the value of 7 in 67,890
Step-by-step explanation:
step 1
we have
678,901
Write in expanded form
678,901=600,000+70,000+8,000+900+1
The value of 7 is 70,000
step 2
we have
67,890
Write in expanded form
67,890=60,000+7,000+800+90
The value of 7 is 7,000
step 3
Divide 70,000 by 7,000

therefore
The value of 7 in 678,901 is 10 times greater than the value of 7 in 67,890
Josh I was just kidding about you I love you love
The coefficient of n is 1
Answer:

Step-by-step explanation:
![L^{-1}[\frac{2s+4}{(s-3)^{3}} ]=](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cfrac%7B2s%2B4%7D%7B%28s-3%29%5E%7B3%7D%7D%20%5D%3D)
Using the Translation theorem to transform the s-3 to s, that means multiplying by and change s to s+3
Translation theorem:
![L^{-1}[\frac{2s+4}{(s-3)^{3}} ]=e^{3t} L^{-1}[\frac{2(s+3)+4}{s^{3}} ]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cfrac%7B2s%2B4%7D%7B%28s-3%29%5E%7B3%7D%7D%20%5D%3De%5E%7B3t%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2%28s%2B3%29%2B4%7D%7Bs%5E%7B3%7D%7D%20%5D)
Separate the fraction in a sum:
![e^{3t} L^{-1}[\frac{2s+10}{s^{3}} ]=e^{3t} L^{-1}[\frac{2s}{s^{3}}+\frac{10}{s^{3}} ]=e^{3t} (L^{-1}[\frac{2}{s^{2}}]+ L^{-1}[\frac{10}{s^{3}}])](https://tex.z-dn.net/?f=e%5E%7B3t%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2s%2B10%7D%7Bs%5E%7B3%7D%7D%20%5D%3De%5E%7B3t%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2s%7D%7Bs%5E%7B3%7D%7D%2B%5Cfrac%7B10%7D%7Bs%5E%7B3%7D%7D%20%5D%3De%5E%7B3t%7D%20%28L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%7D%7D%5D%2B%20L%5E%7B-1%7D%5B%5Cfrac%7B10%7D%7Bs%5E%7B3%7D%7D%5D%29)
The formula for this is:
![L^{-1}[\frac{n!}{s^{n+1}} ]=t^{n}](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cfrac%7Bn%21%7D%7Bs%5E%7Bn%2B1%7D%7D%20%5D%3Dt%5E%7Bn%7D)
Modify the expression to match the formula.
![e^{3t} (2L^{-1}[\frac{1}{s^{1+1}}]+ \frac{10}{2} L^{-1}[\frac{2}{s^{2+1}}])=e^{3t} (2L^{-1}[\frac{1}{s^{1+1}}]+ 5 L^{-1}[\frac{2}{s^{2+1}}])](https://tex.z-dn.net/?f=e%5E%7B3t%7D%20%282L%5E%7B-1%7D%5B%5Cfrac%7B1%7D%7Bs%5E%7B1%2B1%7D%7D%5D%2B%20%5Cfrac%7B10%7D%7B2%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%2B1%7D%7D%5D%29%3De%5E%7B3t%7D%20%282L%5E%7B-1%7D%5B%5Cfrac%7B1%7D%7Bs%5E%7B1%2B1%7D%7D%5D%2B%205%20L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%2B1%7D%7D%5D%29)
Solve
![e^{3t} (2L^{-1}[\frac{1}{s^{1+1}}]+ 5 L^{-1}[\frac{2}{s^{2+1}}])=e^{3t}(2t+5t^{2} )](https://tex.z-dn.net/?f=e%5E%7B3t%7D%20%282L%5E%7B-1%7D%5B%5Cfrac%7B1%7D%7Bs%5E%7B1%2B1%7D%7D%5D%2B%205%20L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%2B1%7D%7D%5D%29%3De%5E%7B3t%7D%282t%2B5t%5E%7B2%7D%20%29)
<u>The three important tools of Federal Reserve's monetary policies are as follows:</u>
- open market operations
- the discount rate
- reserve requirements.
<u>Step-by-step explanation:</u>
The monetary policies of the United States's central bank, Federal Reserve are the acts of the entity to influence money and raise the country's economy. These policies also helps in looking over the aspects of how the money and credits draw affects on credit rates and the overall performance of the U.S. Economy.
The three prime tools of the Federal reserve's monetary policies are the Open Market Operations, Discount Rates and the Reserve Requirements.
<u>Open Market operations</u>
This involves in purchase and selling process of government securities. The primary dealer with which the Reserve deals compete on the basis of prices and thus the dealer gets decided with whom the reserve deal for the day.
<u>Discount Rates</u>
This is the discount rate charged to depository institutions for short term loans by the Federal Reserve.
<u>Reserve Requirements</u>
This is the money or deposit amount the Reserve Bank must sustain in its vault or depository.