The circumference of the top of the cake is
in.
It sounds like the baker is trying to line the circumference with cherriesto fit as many as possible along the border, like in the picture I've attached below.
This comes down to dividing the cake's circumference by the diameter of each cherry:

or about 39 cherries, making the answer D.
Let's put this on the usual Cartesian grid just so we can talk about it without drawing a picture. We'll use map conventions, right is east, up is north.
The ball starts at (0,0). 10.3 feet northwest means we have an isosceles right triangle whose diagonal is 10.3 feet. It's isosceles because northwest means equal parts north and west.
The sides of these triangles are in ratio

so the coordinates after the first putt are

The negative sign indicates west, which doesn't really matter for this problem. The distance from the origin to this point is 10.3 as required.
Now a second putt of 3.8 feet north puts us at

The squared distance to the origin is exactly

A little calculator work tells us

Third choice.
The complete question in the attached figure
we know that
the diagonals of a rhombus intersect to form right angles,
so
angle ACE is ----------> (90°-64°)-----------> 26°
ACE is the angle bisector of ACD, this means that ACD is ---------> 26 x 2 = 52°
The diagonals are angle bisectors to the opposite corners
so
ACD = ACB = 52°
and
BCD = 52 x 2 = 104°
For a rhombus, opposite angles are equivalent,
so
BAD = BCD = 104°
the answer is
angle BAD=104°
Answer: 3.36
Step-by-step explanation: 75minutes / 28= 2.678571428571429
9/2.678571428571429=3.36 times