Answer:
.1
Step-by-step explanation:
Answer:
![x=-\frac{5}{2}](https://tex.z-dn.net/?f=x%3D-%5Cfrac%7B5%7D%7B2%7D)
Step-by-step explanation:
![2^{2x}=\frac{1}{32}](https://tex.z-dn.net/?f=2%5E%7B2x%7D%3D%5Cfrac%7B1%7D%7B32%7D)
![2^{2x}=\frac{1}{2^5}](https://tex.z-dn.net/?f=2%5E%7B2x%7D%3D%5Cfrac%7B1%7D%7B2%5E5%7D)
![2^{2x}=2^{-5}](https://tex.z-dn.net/?f=2%5E%7B2x%7D%3D2%5E%7B-5%7D)
![2x=-5](https://tex.z-dn.net/?f=2x%3D-5)
![x=-\frac{5}{2}](https://tex.z-dn.net/?f=x%3D-%5Cfrac%7B5%7D%7B2%7D)
Well the way I see it is he started with 4 villager so I would see the equation to be
1.13x times 17+4 would equal the amount of villagers he could have which would be 23.21 as for the equation it would be 1.13x times 17 plus four equals the number of villagers total
The mean of a dataset is the sum of all data elements divided by the count of the elements.
The location of the 6th score relative to the mean is 5 points below the mean
Let:
<em> Mean</em>
<em> 5 scores</em>
<em> 6th scores</em>
Given that:
![n = 6](https://tex.z-dn.net/?f=n%20%3D%206)
The 5 scores that are 1 above the mean implies that:
![a = \bar x + 1](https://tex.z-dn.net/?f=a%20%3D%20%5Cbar%20x%20%2B%201)
The mean of a dataset is calculated using:
![\bar x = \frac{\sum x}{n}](https://tex.z-dn.net/?f=%5Cbar%20x%20%3D%20%5Cfrac%7B%5Csum%20x%7D%7Bn%7D)
So, we have:
![\bar x =\frac{5a + b}{6}](https://tex.z-dn.net/?f=%5Cbar%20x%20%3D%5Cfrac%7B5a%20%2B%20b%7D%7B6%7D)
![\bar x =\frac{5(\bar x + 1) + b}{6}](https://tex.z-dn.net/?f=%5Cbar%20x%20%3D%5Cfrac%7B5%28%5Cbar%20x%20%2B%201%29%20%2B%20b%7D%7B6%7D)
Open brackets
![\bar x =\frac{5\bar x + 5 + b}{6}](https://tex.z-dn.net/?f=%5Cbar%20x%20%3D%5Cfrac%7B5%5Cbar%20x%20%2B%205%20%2B%20b%7D%7B6%7D)
Multiply both sides by 6
![6\bar x =5\bar x + 5 + b](https://tex.z-dn.net/?f=6%5Cbar%20x%20%3D5%5Cbar%20x%20%2B%205%20%2B%20b)
Make b the subject
![b = 6\bar x -5\bar x - 5](https://tex.z-dn.net/?f=b%20%3D%206%5Cbar%20x%20-5%5Cbar%20x%20-%205)
![b = \bar x - 5](https://tex.z-dn.net/?f=b%20%3D%20%5Cbar%20x%20-%205)
This means that the 6th score is 5 points below the mean
Read more about mean at:
brainly.com/question/17060266