Answer:
<h2>
b=2</h2>
Option A is the correct option.
Solution,
![4 - 2(b - 6) = 12 \\ or \: 4 - 2b + 12 = 12 \\ or \: 4 + 12 - 2b = 12 \\ or \: 16 - 2b = 12 \\ or \: - 2b = 12 - 16 \\ or \: - 2b = - 4 \\ or \: b = \frac{ - 4}{ - 2} \\ b = 2](https://tex.z-dn.net/?f=4%20-%202%28b%20-%206%29%20%3D%2012%20%5C%5C%20or%20%5C%3A%204%20-%202b%20%2B%2012%20%3D%2012%20%5C%5C%20or%20%5C%3A%204%20%2B%2012%20-%202b%20%3D%2012%20%5C%5C%20or%20%5C%3A%2016%20-%202b%20%3D%2012%20%5C%5C%20or%20%5C%3A%20%20-%202b%20%3D%2012%20-%2016%20%5C%5C%20or%20%5C%3A%20%20-%202b%20%3D%20-%20%204%20%5C%5C%20or%20%5C%3A%20b%20%3D%20%20%5Cfrac%7B%20-%204%7D%7B%20-%202%7D%20%20%5C%5C%20b%20%3D%202)
Hope this helps...
Good luck on your assignment..
5, 5 1/3, 5 2/3, 6, 6 1/3, 6 2/3, 7
Note: Since the symbols for greatest integer function (GIF) and least integer function (LIF) are not given, I will be using the words GIF and LIF in the solution
GIF x means largest integer less than or equal to x, and LIF x means least integer greater than or equal to x.
We need to determine which expressions are equal
Option 1: GIF 4.9 and LIF 3.1
GIF 4.9 = 3
LIF 3.1 = 4
Hence GIF 4.9 ≠ LIF 3.1
Option 2: GIF 15.2 and GIF 14.8
GIF 15.2 = 15
GIF 14.8 = 14
Hence, GIF 15.2 ≠ GIF 14.8
Option 3: GIF -6 and LIF -6
GIF -6 = -6
LIF -6 = -6
Hence, GIF -6 = LIF -6
Option 4: LIF -3.2 and LIF -2.6
LIF -3.2 = -2
LIF -2.6 = -1
Hence, LIF -3.2 ≠ LIF -2.6
Hence, only in Option C the pair of expressions are equal.
It makes the addition easier if you combine like terms like the two 1/2s and then make them all have the denominator of 12 (changing the numerators to equal it out)